RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2014, Volume 48, Issue 3, Pages 34–51 (Mi faa3155)  

This article is cited in 3 scientific papers (total in 3 papers)

Approximation of the Exponential of a Diffusion Operator with Multiscale Coefficients

S. E. Pastukhova

Moscow Institute of Radio-Engineering, Electronics and Automation

Abstract: A multiscale homogenization estimate for a parabolic diffusion equation under minimal regularity conditions is proved. This makes it possible to treat the result as an estimate in the operator norm for the difference of the operator exponentials of the initial and homogenized equations.

Keywords: homogenization, operator-type estimates, locally periodic and multiscale coefficients, shift parameters

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-00192а
Russian Science Foundation 14-11-00398


DOI: https://doi.org/10.4213/faa3155

Full text: PDF file (225 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2014, 48:3, 183–197

Bibliographic databases:

UDC: 517.97
Received: 03.09.2012

Citation: S. E. Pastukhova, “Approximation of the Exponential of a Diffusion Operator with Multiscale Coefficients”, Funktsional. Anal. i Prilozhen., 48:3 (2014), 34–51; Funct. Anal. Appl., 48:3 (2014), 183–197

Citation in format AMSBIB
\Bibitem{Pas14}
\by S.~E.~Pastukhova
\paper Approximation of the Exponential of a Diffusion Operator with Multiscale Coefficients
\jour Funktsional. Anal. i Prilozhen.
\yr 2014
\vol 48
\issue 3
\pages 34--51
\mathnet{http://mi.mathnet.ru/faa3155}
\crossref{https://doi.org/10.4213/faa3155}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3494719}
\zmath{https://zbmath.org/?q=an:06410499}
\elib{http://elibrary.ru/item.asp?id=22834186}
\transl
\jour Funct. Anal. Appl.
\yr 2014
\vol 48
\issue 3
\pages 183--197
\crossref{https://doi.org/10.1007/s10688-014-0060-1}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000342060400004}
\elib{http://elibrary.ru/item.asp?id=23994805}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84908070504}


Linking options:
  • http://mi.mathnet.ru/eng/faa3155
  • https://doi.org/10.4213/faa3155
  • http://mi.mathnet.ru/eng/faa/v48/i3/p34

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. E. Pastukhova, “The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization”, Sb. Math., 207:3 (2016), 418–443  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. V. V. Zhikov, S. E. Pastukhova, “Operator estimates in homogenization theory”, Russian Math. Surveys, 71:3 (2016), 417–511  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Pastukhova S.E., “Estimates in homogenization of higher-order elliptic operators”, Appl. Anal., 95:7, SI (2016), 1449–1466  crossref  mathscinet  zmath  isi  elib  scopus
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:396
    Full text:109
    References:63
    First page:54

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020