RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2014, Volume 48, Issue 4, Pages 9–18 (Mi faa3162)  

Finding the Incomplete Belitskii Normal Form of a Hamiltonian System

V. V. Basov, A. S. Vaganyan

Saint Petersburg State University

Abstract: We suggest an efficient method for finding the incomplete Belitskii normal form of a Hamiltonian system with many degrees of freedom and with a quasihomogeneous unperturbed part of special form. In particular, we obtain closed-form expressions for the incomplete Belitskii normal forms of two-degree-of-freedom Hamiltonian systems with unperturbed Hamiltonian of the form $h_1x_1^{l_1}y_1^{m_1}+h_2x_2^{l_2}y_2^{m_2}$.

Keywords: incomplete Belitskii normal form, Hamiltonian system

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 11.G34.31.0026


DOI: https://doi.org/10.4213/faa3162

Full text: PDF file (171 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2014, 48:4, 242–249

Bibliographic databases:

UDC: 517.9
Received: 21.04.2013

Citation: V. V. Basov, A. S. Vaganyan, “Finding the Incomplete Belitskii Normal Form of a Hamiltonian System”, Funktsional. Anal. i Prilozhen., 48:4 (2014), 9–18; Funct. Anal. Appl., 48:4 (2014), 242–249

Citation in format AMSBIB
\Bibitem{BasVag14}
\by V.~V.~Basov, A.~S.~Vaganyan
\paper Finding the Incomplete Belitskii Normal Form of a Hamiltonian System
\jour Funktsional. Anal. i Prilozhen.
\yr 2014
\vol 48
\issue 4
\pages 9--18
\mathnet{http://mi.mathnet.ru/faa3162}
\crossref{https://doi.org/10.4213/faa3162}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3372736}
\zmath{https://zbmath.org/?q=an:06434566}
\elib{http://elibrary.ru/item.asp?id=23421389}
\transl
\jour Funct. Anal. Appl.
\yr 2014
\vol 48
\issue 4
\pages 242--249
\crossref{https://doi.org/10.1007/s10688-014-0067-7}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000346483500002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919414590}


Linking options:
  • http://mi.mathnet.ru/eng/faa3162
  • https://doi.org/10.4213/faa3162
  • http://mi.mathnet.ru/eng/faa/v48/i4/p9

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:166
    Full text:51
    References:40
    First page:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019