|
This article is cited in 4 scientific papers (total in 4 papers)
Completeness in the Mackey topology
A. J. Guirao, V. Montesinos Universidad Politécnica de Valencia
Abstract:
Bonet and Cascales [Non-complete Mackey topologies on Banach spaces, Bulletin of the Australian Mathematical Society, 81, 3 (2010), 409–413], answering a question of M. Kunze and W. Arendt, gave an example of a norming norm-closed subspace $N$ of the dual of a Banach space $X$ such that $\mu(X,N)$ is not complete, where $\mu(X,N)$ denotes the Mackey topology associated with the dual pair $\langle X,N\rangle$. We prove in this note that we can decide on the completeness or incompleteness of
topologies of this form in a quite general context, thus providing large classes of counterexamples to the aforesaid question. Moreover, our examples use subspaces $N$ of $X^*$ that contain a predual $P$ of $X$ (if exists), showing that the phenomenon of noncompleteness that Kunze and Arendt were looking for is not only relatively common but illustrated by “well-located” subspaces of the dual. We discuss also the situation for a typical Banach space without a predual—the space $c_0$—and for the James space $J$.
Keywords:
Mackey-star topology, completeness, local completeness, Banach space
DOI:
https://doi.org/10.4213/faa3194
Full text:
PDF file (213 kB)
References:
PDF file
HTML file
English version:
Functional Analysis and Its Applications, 2015, 49:2, 97–105
Bibliographic databases:
UDC:
517.98+515.1 Received: 13.03.2013
Citation:
A. J. Guirao, V. Montesinos, “Completeness in the Mackey topology”, Funktsional. Anal. i Prilozhen., 49:2 (2015), 21–33; Funct. Anal. Appl., 49:2 (2015), 97–105
Citation in format AMSBIB
\Bibitem{GuiMon15}
\by A.~J.~Guirao, V.~Montesinos
\paper Completeness in the Mackey topology
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 2
\pages 21--33
\mathnet{http://mi.mathnet.ru/faa3194}
\crossref{https://doi.org/10.4213/faa3194}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3374900}
\zmath{https://zbmath.org/?q=an:06486270}
\elib{https://elibrary.ru/item.asp?id=24849950}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 2
\pages 97--105
\crossref{https://doi.org/10.1007/s10688-015-0091-2}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000356443000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84935884480}
Linking options:
http://mi.mathnet.ru/eng/faa3194https://doi.org/10.4213/faa3194 http://mi.mathnet.ru/eng/faa/v49/i2/p21
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Rodriguez J., “On Integration in Banach Spaces and Total Sets”, Quaest. Math.
-
A. J. Guirao, V. Montesinos, V. Zizler, “A note on Mackey topologies on Banach spaces”, J. Math. Anal. Appl., 445:1 (2017), 944–952
-
V. Bogachev, O. Smolyanov, Topological vector spaces and their applications, Springer Monographs in Mathematics, Springer, Cham, 2017, x + 456 pp.
-
Guirao A.J., Martinez-Cervantes G., Rodriguez J., “Completeness in the Mackey Topology By Norming Subspaces”, J. Math. Anal. Appl., 478:2 (2019), 776–789
|
Number of views: |
This page: | 198 | Full text: | 49 | References: | 40 | First page: | 26 |
|