RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2015, Volume 49, Issue 3, Pages 60–65 (Mi faa3202)  

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Remarks on Quantum Markov States

Z. I. Bezhaevaa, V. I. Oseledetsbc

a Moscow State Institute of Electronics and Mathematics — Higher School of Economics
b Financial University under the Government of the Russian Federation, Moscow
c Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The definition of a quantum Markov state was given by Accardi in 1975. For the classical case, this definition gives hidden Markov measures, which, generally speaking, are not Markov measures. We can use a nonnegative transfer matrix to define a Markov measure. We use a positive semidefinite transfer matrix and select a class of quantum Markov states (in the sense of Accardi) on the inductive limit of the $C^*$-algebras $M_{d^n}$. An entangled quantum Markov state in the sense of Accardi and Fidaleo is a quantum Markov state in our sense. For the case where the transfer matrix has rank $1$, we calculate the eigenvalues and the eigenvectors of the density matrices determining the quantum Markov state. The sequence of von Neumann entropies of the density matrices of this state is bounded.

Keywords: $C^*$-algebra, state on $C^*$-algebra, density matrix, quantum Markov state, von Neumann entropy

DOI: https://doi.org/10.4213/faa3202

Full text: PDF file (184 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2015, 49:3, 205–209

Bibliographic databases:

UDC: 519.2
Received: 30.11.2014

Citation: Z. I. Bezhaeva, V. I. Oseledets, “Remarks on Quantum Markov States”, Funktsional. Anal. i Prilozhen., 49:3 (2015), 60–65; Funct. Anal. Appl., 49:3 (2015), 205–209

Citation in format AMSBIB
\Bibitem{BezOse15}
\by Z.~I.~Bezhaeva, V.~I.~Oseledets
\paper Remarks on Quantum Markov States
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 3
\pages 60--65
\mathnet{http://mi.mathnet.ru/faa3202}
\crossref{https://doi.org/10.4213/faa3202}
\elib{http://elibrary.ru/item.asp?id=24849967}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 3
\pages 205--209
\crossref{https://doi.org/10.1007/s10688-015-0105-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000361557200005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84942092784}


Linking options:
  • http://mi.mathnet.ru/eng/faa3202
  • https://doi.org/10.4213/faa3202
  • http://mi.mathnet.ru/eng/faa/v49/i3/p60

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Z. I. Bezhaeva, V. I. Oseledets, “Quantum Markov states and quantum hidden Markov states”, J. Math. Sci. (N. Y.), 240:5 (2019), 507–514  mathnet  crossref
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:198
    Full text:47
    References:27
    First page:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020