Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2016, Volume 50, Issue 3, Pages 76–81 (Mi faa3250)  

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Projections of orbital measures for classical Lie groups

D. Zubov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: In this paper we compute the radial parts of the projections of orbital measures for the compact Lie groups of B, C, and D type, extending previous results obtained for the case of the unitary group by Olshanski and Faraut. Applying the method of Faraut, we show that the radial part of the projection of an orbital measure is expressed in terms of a B-spline with knots located symmetrically with respect to zero.

Keywords: orbital measures, B-splines, divided differences, Harish-Chandra–Itzykson–Zuber integral

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.


DOI: https://doi.org/10.4213/faa3250

Full text: PDF file (172 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2016, 50:3, 228–232

Bibliographic databases:

UDC: 512.81
Received: 17.01.2016

Citation: D. Zubov, “Projections of orbital measures for classical Lie groups”, Funktsional. Anal. i Prilozhen., 50:3 (2016), 76–81; Funct. Anal. Appl., 50:3 (2016), 228–232

Citation in format AMSBIB
\Bibitem{Zub16}
\by D.~Zubov
\paper Projections of orbital measures for classical Lie groups
\jour Funktsional. Anal. i Prilozhen.
\yr 2016
\vol 50
\issue 3
\pages 76--81
\mathnet{http://mi.mathnet.ru/faa3250}
\crossref{https://doi.org/10.4213/faa3250}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3646719}
\zmath{https://zbmath.org/?q=an:06681945}
\elib{https://elibrary.ru/item.asp?id=27349840}
\transl
\jour Funct. Anal. Appl.
\yr 2016
\vol 50
\issue 3
\pages 228--232
\crossref{https://doi.org/10.1007/s10688-016-0151-2}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000384420000007}
\elib{https://elibrary.ru/item.asp?id=27574912}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84988354457}


Linking options:
  • http://mi.mathnet.ru/eng/faa3250
  • https://doi.org/10.4213/faa3250
  • http://mi.mathnet.ru/eng/faa/v50/i3/p76

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. J. Forrester, J. R. Ipsen, D.-Zh. Liu, L. Zhang, “Orthogonal and symplectic harish-chandra integrals and matrix product ensembles”, Random Matrices-Theor. Appl., 8:4 (2019), 1950015  crossref  mathscinet  zmath  isi
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:213
    Full text:84
    References:23
    First page:16

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022