RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2000, Volume 34, Issue 4, Pages 85–87 (Mi faa331)  

This article is cited in 6 scientific papers (total in 6 papers)

Brief communications

The Negative Spectrum of a Class of Two-Dimensional Schrödinger Operators with Potentials Depending Only on Radius

A. Laptev

Royal Institute of Technology, Department of Mathematics, Stockholm, Sweden

DOI: https://doi.org/10.4213/faa331

Full text: PDF file (79 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2000, 34:4, 305–307

Bibliographic databases:

UDC: 517.9
Received: 07.04.1999

Citation: A. Laptev, “The Negative Spectrum of a Class of Two-Dimensional Schrödinger Operators with Potentials Depending Only on Radius”, Funktsional. Anal. i Prilozhen., 34:4 (2000), 85–87; Funct. Anal. Appl., 34:4 (2000), 305–307

Citation in format AMSBIB
\Bibitem{Lap00}
\by A.~Laptev
\paper The Negative Spectrum of a Class of Two-Dimensional Schr\"odinger Operators with Potentials Depending Only on Radius
\jour Funktsional. Anal. i Prilozhen.
\yr 2000
\vol 34
\issue 4
\pages 85--87
\mathnet{http://mi.mathnet.ru/faa331}
\crossref{https://doi.org/10.4213/faa331}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1819649}
\zmath{https://zbmath.org/?q=an:0972.35079}
\elib{http://elibrary.ru/item.asp?id=13672151}
\transl
\jour Funct. Anal. Appl.
\yr 2000
\vol 34
\issue 4
\pages 305--307
\crossref{https://doi.org/10.1023/A:1004169726452}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000166603100010}


Linking options:
  • http://mi.mathnet.ru/eng/faa331
  • https://doi.org/10.4213/faa331
  • http://mi.mathnet.ru/eng/faa/v34/i4/p85

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Chadan, K, “Bound states in one and two spatial dimensions”, Journal of Mathematical Physics, 44:2 (2003), 406  crossref  mathscinet  zmath  adsnasa  isi  scopus
    2. Kovarik, H, “Spectral estimates for two-dimensional Schrödinger operators with application to quantum layers”, Communications in Mathematical Physics, 275:3 (2007), 827  crossref  mathscinet  zmath  adsnasa  isi  scopus
    3. Laptev A., Solomyak M., “On the Negative Spectrum of the Two-Dimensional Schrodinger Operator with Radial Potential”, Commun. Math. Phys., 314:1 (2012), 229–241  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    4. Truc F., “Eigenvalue Bounds for Radial Magnetic Bottles on the Disk”, Asymptotic Anal., 76:3-4 (2012), 233–248  crossref  mathscinet  zmath  isi  scopus
    5. Grigor'yan A., Nadirashvili N., “Negative Eigenvalues of Two-Dimensional Schrodinger Operators”, Arch. Ration. Mech. Anal., 217:3 (2015), 975–1028  crossref  mathscinet  zmath  isi  scopus
    6. Sezer Y., “The Asymptotic Formulas For the Sum of Squares of Negative Eigenvalues of a Singular Sturm-Liouville Operator”, Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys., 79:4 (2017), 69–82  mathscinet  isi
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:282
    Full text:136
    References:39
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020