RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2018, Volume 52, Issue 1, Pages 92–97 (Mi faa3451)  

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Monodromization and Difference Equations with Meromorphic Periodic Coefficients

A. A. Fedotov

Saint Petersburg State University, St. Petersburg, Russia

Abstract: We consider a system of two first-order difference equations in the complex plane. We assume that the matrix of the system is a 1-periodic meromorphic function having two simple poles per period and bounded as $\operatorname{Im}z\to\pm \infty$. We prove the existence and uniqueness of minimal meromorphic solutions, i.e., solutions having simultaneously a minimal set of poles and minimal possible growth as $\operatorname{Im}z\to\pm \infty$. We consider the monodromy matrix representing the shift-byperiod operator in the space of meromorphic solutions and corresponding to a basis built of two minimal solutions. We check that it has the same functional structure as the matrix of the initial system of equations and, in particular, is a meromorphic periodic function with two simple poles per period. This implies that the initial equation is invariant with respect to the monodromization procedure, that is, a natural renormalization procedure arising when trying to extend the Floquet–Bloch theory to difference equations defined on the real line or complex plane and having periodic coefficients. Our initial system itself arises after one renormalization of a self-adjoint difference Schrödinger equation with 1-periodic meromorphic potential bounded at $\pm i\infty$ and having two poles per period.

Keywords: difference equations in the complex plane, meromorphic periodic coefficients, monodromy matrix, renormalization procedure.

Funding Agency Grant Number
Centre National de la Recherche Scientifique
Russian Foundation for Basic Research 17-51-150008
The present work was supported by the Russian foundation of basic research under grant 17-51-150008-CNRS-a.


DOI: https://doi.org/10.4213/faa3451

Full text: PDF file (149 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2018, 52:1, 77–81

Bibliographic databases:

UDC: 517.962.22
Received: 02.10.2016

Citation: A. A. Fedotov, “Monodromization and Difference Equations with Meromorphic Periodic Coefficients”, Funktsional. Anal. i Prilozhen., 52:1 (2018), 92–97; Funct. Anal. Appl., 52:1 (2018), 77–81

Citation in format AMSBIB
\Bibitem{Fed18}
\by A.~A.~Fedotov
\paper Monodromization and Difference Equations with Meromorphic Periodic Coefficients
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 1
\pages 92--97
\mathnet{http://mi.mathnet.ru/faa3451}
\crossref{https://doi.org/10.4213/faa3451}
\elib{http://elibrary.ru/item.asp?id=32428050}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 1
\pages 77--81
\crossref{https://doi.org/10.1007/s10688-018-0213-8}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000428558200013}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044767007}


Linking options:
  • http://mi.mathnet.ru/eng/faa3451
  • https://doi.org/10.4213/faa3451
  • http://mi.mathnet.ru/eng/faa/v52/i1/p92

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Fedotov, “On minimal entire solutions of the one-dimensional difference Schrödinger equation with the potential $v(z)=e^{-2\pi iz}$”, J. Math. Sci. (N. Y.), 238:5 (2019), 750–761  mathnet  crossref
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:175
    References:24
    First page:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020