Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2019, Volume 53, Issue 1, Pages 79–83 (Mi faa3516)  

Brief communications

On the Borsuk–Ulam theorem for Lipschitz mappings in an infinite-dimensional space

B. D. Gel'manab

a Voronezh State University
b Peoples' Friendship University of Russia, Moscow

Abstract: The present paper is devoted to the study of the solvability and dimension of the solution set of the equation $A (x) = f (x)$ on the sphere of a Hilbert space, in the case when A is a closed surjective operator and f a Lipschitz odd mapping. This theorem is a certain "analogue" of the infinite-dimensional version of the Borsuk-Ulam theorem.

Keywords: Borsuk–Ulam theorem, surjective operator, contractive mappings, Lipschitz constant, topological dimension.

Funding Agency Grant Number
Russian Science Foundation 17-11-01168


DOI: https://doi.org/10.4213/faa3516

Full text: PDF file (156 kB)
First page: PDF file
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.988.6
Received: 03.09.2017

Citation: B. D. Gel'man, “On the Borsuk–Ulam theorem for Lipschitz mappings in an infinite-dimensional space”, Funktsional. Anal. i Prilozhen., 53:1 (2019), 79–83

Citation in format AMSBIB
\Bibitem{Gel19}
\by B.~D.~Gel'man
\paper On the Borsuk--Ulam theorem for Lipschitz mappings in an infinite-dimensional space
\jour Funktsional. Anal. i Prilozhen.
\yr 2019
\vol 53
\issue 1
\pages 79--83
\mathnet{http://mi.mathnet.ru/faa3516}
\crossref{https://doi.org/10.4213/faa3516}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3909121}
\elib{https://elibrary.ru/item.asp?id=37045028}


Linking options:
  • http://mi.mathnet.ru/eng/faa3516
  • https://doi.org/10.4213/faa3516
  • http://mi.mathnet.ru/eng/faa/v53/i1/p79

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:193
    References:16
    First page:23

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021