RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2019, Volume 53, Issue 2, Pages 42–58 (Mi faa3597)  

On the Distribution of Zero Sets of Holomorphic Functions. III. Inversion Theorems

B. N. Khabibullin, F. B. Khabibullin

Bashkir State University, Ufa

Abstract: Let $M$ be a subharmonic function on a domain $D\subset \mathbb C^n$ with Riesz measure $\nu_M$, ${\mathsf Z} \subset D$. As was shown in the first of the preceding articles, if there exists a holomorphic function $ f\neq 0 $ on $D$, $f ({\mathsf Z}) = 0$, $|f|\leq \exp M$ on $D$, then there is some scale of integral uniform estimates from above of the distribution of the set $\mathsf Z$ in terms of $\nu_M$. In this article we show that for $n = 1$ this result is “almost invertible”. From such scale estimates of the distribution of points of the sequence ${\mathsf Z}:= \{{\mathsf z} _k \}_{k = 1,2, … \subset D \subset \mathbb C$ by $\nu_M$ it follows that there exists a nonzero holomorphic function $f$ in $D$, $f (\mathsf Z) =0$, $|f| \leq \exp M^{\uparrow}$ on $D$, where the function $ M^{\uparrow} \geq M$ on $D$ is constructed by averaging of $M$ in rapidly convergent disks as we approach the boundary of the domain $D$ with some possible additive logarithmic component associated with the rate of narrowing of these disks.

Keywords: holomorphic function, sequence of zeros, subharmonic function, Jensen measure, test function, balayage

Funding Agency Grant Number
Russian Science Foundation 18-11-00002
Russian Foundation for Basic Research 18-51-06002

Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/faa3597

Full text: PDF file (376 kB)
First page: PDF file
References: PDF file   HTML file

UDC: 517.53+517.574+517.987.1
MSC: 30C15, 31A05, 28A25, 30C85
Received: 12.07.2018
Revised: 12.07.2018
Accepted:04.02.2019

Citation: B. N. Khabibullin, F. B. Khabibullin, “On the Distribution of Zero Sets of Holomorphic Functions. III. Inversion Theorems”, Funktsional. Anal. i Prilozhen., 53:2 (2019), 42–58

Citation in format AMSBIB
\Bibitem{KhaKha19}
\by B.~N.~Khabibullin, F.~B.~Khabibullin
\paper On the Distribution of Zero Sets of Holomorphic Functions. III. Inversion Theorems
\jour Funktsional. Anal. i Prilozhen.
\yr 2019
\vol 53
\issue 2
\pages 42--58
\mathnet{http://mi.mathnet.ru/faa3597}
\crossref{https://doi.org/10.4213/faa3597}
\elib{http://elibrary.ru/item.asp?id=37298260}


Linking options:
  • http://mi.mathnet.ru/eng/faa3597
  • https://doi.org/10.4213/faa3597
  • http://mi.mathnet.ru/eng/faa/v53/i2/p42

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:89
    References:8
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019