RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2005, Volume 39, Issue 2, Pages 87–91 (Mi faa46)  

This article is cited in 6 scientific papers (total in 6 papers)

Brief communications

A Generalization of the Euler Gamma Function

M. Spreafico

Universidade de São Paulo

Abstract: We define a generalized Euler gamma function $\Gamma_\beta(z)$, where the product is taken over powers of integers rather than integers themselves. Studying the associated spectral functions and in particular the zeta function, we obtain the main properties of $\Gamma_\beta(z)$ and its asymptotic expansion for large values of the argument.

Keywords: Euler gamma function, spectral function, asymptotic expansion

DOI: https://doi.org/10.4213/faa46

Full text: PDF file (165 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2005, 39:2, 156–159

Bibliographic databases:

UDC: 517.581
Received: 23.04.2003

Citation: M. Spreafico, “A Generalization of the Euler Gamma Function”, Funktsional. Anal. i Prilozhen., 39:2 (2005), 87–91; Funct. Anal. Appl., 39:2 (2005), 156–159

Citation in format AMSBIB
\Bibitem{Spr05}
\by M.~Spreafico
\paper A Generalization of the Euler Gamma Function
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 2
\pages 87--91
\mathnet{http://mi.mathnet.ru/faa46}
\crossref{https://doi.org/10.4213/faa46}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2161522}
\zmath{https://zbmath.org/?q=an:1115.33002}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 2
\pages 156--159
\crossref{https://doi.org/10.1007/s10688-005-0031-7}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000231004800011}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23744475415}


Linking options:
  • http://mi.mathnet.ru/eng/faa46
  • https://doi.org/10.4213/faa46
  • http://mi.mathnet.ru/eng/faa/v39/i2/p87

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Spreafico M., “Zeta invariants for sequences of spectral type, special functions and the Lerch formula”, Proc. Roy. Soc. Edinburgh Sect. A, 136:4 (2006), 863–887  crossref  mathscinet  zmath  isi  scopus
    2. Spreafico M., Zerbini S., “Spectral analysis and zeta determinant on the deformed spheres”, Comm. Math. Phys., 273:3 (2007), 677–704  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    3. Spreafico M., “On the Barnes double zeta and Gamma functions”, J. Number Theory, 129:9 (2009), 2035–2063  crossref  mathscinet  zmath  isi  scopus
    4. Spreafico M., “Zeta Determinant and Operator Determinants”, Osaka J Math, 48:1 (2011), 41–50  mathscinet  zmath  isi
    5. Spreafico M., “Zeta Determinant for Double Sequences of Spectral Type”, Proc. Amer. Math. Soc., 140:6 (2012), 1881–1896  crossref  mathscinet  zmath  isi  scopus
    6. Albeverio S., Cacciapuoti C., Spreafico M., “Relative Partition Function of Coulomb Plus Delta Interaction”, Functional Analysis and Operator Theory For Quantum Physics: the Pavel Exner Anniversary Volume, EMS Ser. Congr. Rep., eds. Dittrich J., Kovarik H., Laptev A., Eur. Math. Soc., 2017, 1–29  mathscinet  zmath  isi
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:615
    Full text:211
    References:44
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020