RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 1995, Volume 29, Issue 3, Pages 1–15 (Mi faa590)  

This article is cited in 15 scientific papers (total in 15 papers)

Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent to the Integrable Euler Case in Rigid Body Dynamics

A. V. Bolsinov, A. T. Fomenko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Full text: PDF file (1491 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 1995, 29:3, 149–160

Bibliographic databases:

UDC: 517.938.5
Received: 14.03.1994

Citation: A. V. Bolsinov, A. T. Fomenko, “Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent to the Integrable Euler Case in Rigid Body Dynamics”, Funktsional. Anal. i Prilozhen., 29:3 (1995), 1–15; Funct. Anal. Appl., 29:3 (1995), 149–160

Citation in format AMSBIB
\Bibitem{BolFom95}
\by A.~V.~Bolsinov, A.~T.~Fomenko
\paper Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent
to the Integrable Euler Case in Rigid Body Dynamics
\jour Funktsional. Anal. i Prilozhen.
\yr 1995
\vol 29
\issue 3
\pages 1--15
\mathnet{http://mi.mathnet.ru/faa590}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1361950}
\zmath{https://zbmath.org/?q=an:0878.58036}
\transl
\jour Funct. Anal. Appl.
\yr 1995
\vol 29
\issue 3
\pages 149--160
\crossref{https://doi.org/10.1007/BF01077048}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995TX97900001}


Linking options:
  • http://mi.mathnet.ru/eng/faa590
  • http://mi.mathnet.ru/eng/faa/v29/i3/p1

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Bolsinov, “Fomenko invariants in the theory of integrable Hamiltonian systems”, Russian Math. Surveys, 52:5 (1997), 997–1015  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. D. V. Novikov, “Topological features of the Sokolov integrable case on the Lie algebra $\mathrm{e}(3)$”, Sb. Math., 202:5 (2011), 749–781  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. V. V. Fokicheva, “Description of singularities for system “billiard in an ellipse””, Moscow University Mathematics Bulletin, 67:5-6 (2012), 217–220  mathnet  crossref  mathscinet
    4. S. S. Nikolaenko, “The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid”, Moscow University Mathematics Bulletin, 68:5 (2013), 241–245  mathnet  crossref  mathscinet
    5. S. S. Nikolaenko, “A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid”, Sb. Math., 205:2 (2014), 224–268  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. D. V. Novikov, “Topological features of the Sokolov integrable case on the Lie algebra $\mathrm{so}(3,1)$”, Sb. Math., 205:8 (2014), 1107–1132  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Superintegrable Generalizations of the Kepler and Hook Problems”, Regul. Chaotic Dyn., 19:3 (2014), 415–434  mathnet  crossref  mathscinet  zmath
    8. V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow University Mathematics Bulletin, 69:4 (2014), 148–158  mathnet  crossref  mathscinet
    9. I. V. Sypchenko, D. S. Timonina, “Closed geodesics on piecewise smooth surfaces of revolution with constant curvature”, Sb. Math., 206:5 (2015), 738–769  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. E. O. Kantonistova, “Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution”, Sb. Math., 207:3 (2016), 358–399  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    12. D. S. Timonina, “Liouville classification of integrable geodesic flows on a torus of revolution in a potential field”, Moscow University Mathematics Bulletin, 72:3 (2017), 121–128  mathnet  crossref  mathscinet  isi  elib
    13. D. S. Timonina, “Liouville classification of integrable geodesic flows in a potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle”, Sb. Math., 209:11 (2018), 1644–1676  mathnet  crossref  crossref  adsnasa  isi  elib
    14. V. V. Vedyushkina, “The Fomenko–Zieschang invariants of nonconvex topological billiards”, Sb. Math., 210:3 (2019), 310–363  mathnet  crossref  crossref  adsnasa  isi  elib
    15. V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173  mathnet  crossref  crossref  adsnasa  isi
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:389
    Full text:119
    References:43
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020