RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 1994, Volume 28, Issue 4, Pages 42–65 (Mi faa667)  

This article is cited in 3 scientific papers (total in 3 papers)

A Realization of the Modular Functor in the Space of Differentials and the Geometric Approximation of the Moduli Space of $G$-Bundles

A. V. Stoyanovskiia, B. L. Feiginb

a Independent University of Moscow
b Steklov Mathematical Institute, Russian Academy of Sciences

Full text: PDF file (2251 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 1994, 28:4, 257–275

Bibliographic databases:

UDC: 512.81
Received: 17.01.1994

Citation: A. V. Stoyanovskii, B. L. Feigin, “A Realization of the Modular Functor in the Space of Differentials and the Geometric Approximation of the Moduli Space of $G$-Bundles”, Funktsional. Anal. i Prilozhen., 28:4 (1994), 42–65; Funct. Anal. Appl., 28:4 (1994), 257–275

Citation in format AMSBIB
\Bibitem{StoFei94}
\by A.~V.~Stoyanovskii, B.~L.~Feigin
\paper A Realization of the Modular Functor in the Space of Differentials and the Geometric Approximation of the Moduli Space of $G$-Bundles
\jour Funktsional. Anal. i Prilozhen.
\yr 1994
\vol 28
\issue 4
\pages 42--65
\mathnet{http://mi.mathnet.ru/faa667}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1318339}
\zmath{https://zbmath.org/?q=an:0857.17021}
\transl
\jour Funct. Anal. Appl.
\yr 1994
\vol 28
\issue 4
\pages 257--275
\crossref{https://doi.org/10.1007/BF01076110}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1994QZ85000004}


Linking options:
  • http://mi.mathnet.ru/eng/faa667
  • http://mi.mathnet.ru/eng/faa/v28/i4/p42

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Odesskii, B. L. Feigin, “Elliptic Deformations of Current Algebras and Their Representations by Difference Operators”, Funct. Anal. Appl., 31:3 (1997), 193–203  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. A. M. Semikhatov, I. Yu. Tipunin, B. L. Feigin, “Semi-Infinite Realization of Unitary Representations of the $N=2$ Algebra and Related Constructions”, Theoret. and Math. Phys., 126:1 (2001), 1–47  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Capparelli, S, “The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators”, Ramanujan Journal, 12:3 (2006), 379  crossref  mathscinet  zmath  isi
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:448
    Full text:198
    References:26
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019