RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 2005, Volume 39, Issue 3, Pages 1–13 (Mi faa70)  

Some Algebraic Properties of Cerf Diagrams of One-Parameter Function Families

P. M. Akhmet'eva, D. Repovšb, M. Cenceljb

a Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation
b University of Ljubljana

Abstract: We obtain results concerning Arnold's problem about a generalization of the Pontryagin–Thom construction in cobordism theory to real algebraic functions. The Pontryagin–Thom construction in the Wells form is transferred to the space of real functions. The relation of the problem with algebraic $K$-theory and the $h$-principle due to Eliashberg and Mishachev is revealed.

Keywords: wrinkle, Pontryagin–Thom construction, $h$-principle

DOI: https://doi.org/10.4213/faa70

Full text: PDF file (229 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2005, 39:3, 165–174

Bibliographic databases:

UDC: 515.142
Received: 13.02.2003

Citation: P. M. Akhmet'ev, D. Repovš, M. Cencelj, “Some Algebraic Properties of Cerf Diagrams of One-Parameter Function Families”, Funktsional. Anal. i Prilozhen., 39:3 (2005), 1–13; Funct. Anal. Appl., 39:3 (2005), 165–174

Citation in format AMSBIB
\Bibitem{AkhRepCen05}
\by P.~M.~Akhmet'ev, D.~Repov{\v s}, M.~Cencelj
\paper Some Algebraic Properties of Cerf Diagrams of One-Parameter Function Families
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 3
\pages 1--13
\mathnet{http://mi.mathnet.ru/faa70}
\crossref{https://doi.org/10.4213/faa70}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2174602}
\zmath{https://zbmath.org/?q=an:1126.57014}
\elib{https://elibrary.ru/item.asp?id=13474001}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 3
\pages 165--174
\crossref{https://doi.org/10.1007/s10688-005-0035-3}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000232583600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-26444596671}


Linking options:
  • http://mi.mathnet.ru/eng/faa70
  • https://doi.org/10.4213/faa70
  • http://mi.mathnet.ru/eng/faa/v39/i3/p1

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:345
    Full text:155
    References:47
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020