|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Неоднородная квадратичная двойственность и кривизна
Л. Е. Посицельский Московский государственный университет им. М. В. Ломоносова
Аннотация:
Определяется квадратичная двойственность для алгебр с неоднородными соотношениями; классический пример — двойственность между алгеброй дифференциальных операторов и мультипликативным комплексом де Рама. Скалярная часть соотношений интерпретируется как кривизна. Вводятся классы Чженя неоднородной квадратичной алгебры как некоторые препятствия,
а также классы Чженя–Саймонса. В контексте двойственности рассматривается терема Пуанкаре–Биркгофа–Витта, дано простое доказательство.
Полный текст:
PDF файл (933 kB)
Список литературы:
PDF файл
HTML файл
Англоязычная версия:
Functional Analysis and Its Applications, 1993, 27:3, 197–204
Реферативные базы данных:
УДК:
512.66 Поступило в редакцию: 03.11.1992
Образец цитирования:
Л. Е. Посицельский, “Неоднородная квадратичная двойственность и кривизна”, Функц. анализ и его прил., 27:3 (1993), 57–66; Funct. Anal. Appl., 27:3 (1993), 197–204
Цитирование в формате AMSBIB
\RBibitem{Pos93}
\by Л.~Е.~Посицельский
\paper Неоднородная квадратичная двойственность и кривизна
\jour Функц. анализ и его прил.
\yr 1993
\vol 27
\issue 3
\pages 57--66
\mathnet{http://mi.mathnet.ru/faa712}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1250981}
\zmath{https://zbmath.org/?q=an:0826.16041}
\transl
\jour Funct. Anal. Appl.
\yr 1993
\vol 27
\issue 3
\pages 197--204
\crossref{https://doi.org/10.1007/BF01087537}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993MN15000006}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/faa712 http://mi.mathnet.ru/rus/faa/v27/i3/p57
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
С. В. Лапин, “Гомотопические свойства дифференциальных модулей Ли над искривленными коалгебрами и двойственность по Кошулю”, Матем. заметки, 94:3 (2013), 354–372
; S. V. Lapin, “Homotopy Properties of Differential Lie Modules over Curved Coalgebras and Koszul Duality”, Math. Notes, 94:3 (2013), 335–350 -
С. В. Лапин, “Дифференциальные модули Ли над искривленными крашенными коалгебрами и $\infty$-симплициальные модули”, Матем. заметки, 96:5 (2014), 709–731
; S. V. Lapin, “Differential Lie Modules over Curved Colored Coalgebras and $\infty$-Simplicial Modules”, Math. Notes, 96:5 (2014), 698–715
|
Просмотров: |
Эта страница: | 669 | Полный текст: | 344 | Литература: | 34 | Первая стр.: | 1 |
|