General information
Latest issue
Impact factor
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Funktsional. Anal. i Prilozhen.:

Personal entry:
Save password
Forgotten password?

Funktsional. Anal. i Prilozhen., 2006, Volume 40, Issue 3, Pages 53–65 (Mi faa743)  

This article is cited in 37 scientific papers (total in 37 papers)

Quantum Inverse Scattering Method for the $q$-Boson Model and Symmetric Functions

N. V. Tsilevich

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: The purpose of this paper is to show that the quantum inverse scattering method for the so-called $q$-boson model has a nice interpretation in terms of the algebra of symmetric functions. In particular, in the case of the phase model (corresponding to $q=0$) the creation operator coincides (modulo a scalar factor) with the operator of multiplication by the generating function of complete homogeneous symmetric functions, and the wave functions are expressed via the Schur functions $s_\lambda(x)$. The general case of the $q$-boson model is related in a similar way to the Hall–Littlewood symmetric functions $P_\lambda(x;q^2)$.

Keywords: $q$-boson model, phase model, quantum inverse scattering method, symmetric functions, Hall–Littlewood functions, Schur functions


Full text: PDF file (239 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 2006, 40:3, 207–217

Bibliographic databases:

UDC: 517.958
Received: 10.08.2005

Citation: N. V. Tsilevich, “Quantum Inverse Scattering Method for the $q$-Boson Model and Symmetric Functions”, Funktsional. Anal. i Prilozhen., 40:3 (2006), 53–65; Funct. Anal. Appl., 40:3 (2006), 207–217

Citation in format AMSBIB
\by N.~V.~Tsilevich
\paper Quantum Inverse Scattering Method for the $q$-Boson Model and Symmetric Functions
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 3
\pages 53--65
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 3
\pages 207--217

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. M. Bogolyubov, “Enumeration of plane partitions and the algebraic Bethe anzatz”, Theoret. and Math. Phys., 150:2 (2007), 165–174  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. N. M. Bogolyubov, “Four-vertex model”, J. Math. Sci. (N. Y.), 151:2 (2008), 2816–2828  mathnet  crossref  mathscinet
    3. N. M. Bogolyubov, “Four-vertex model and random tilings”, Theoret. and Math. Phys., 155:1 (2008), 523–535  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. V. S. Kapitonov, A. G. Pronko, “The five-vertex model and boxed plane partitions”, J. Math. Sci. (N. Y.), 158:6 (2009), 858–867  mathnet  crossref  zmath
    5. Sulkowski P., “Deformed boson-fermion correspondence, $Q$-bosons, and topological strings on the conifold”, J. High Energy Phys., 2008, no. 10, 104, 17 pp.  crossref  mathscinet  zmath  isi  scopus
    6. J. Math. Sci. (N. Y.), 158:6 (2009), 771–786  mathnet  crossref  zmath
    7. N. M. Bogolyubov, “Five vertex model with fixed boundary conditions”, St. Petersburg Math. J., 21:3 (2010), 407–421  mathnet  crossref  mathscinet  zmath  isi
    8. Zuparic M., “Phase model expectation values and the 2-Toda hierarchy”, J. Stat. Mech. Theory Exp., 2009, no. 8, P08010, 26 pp.  crossref  mathscinet  zmath  isi  elib  scopus
    9. Foda O., Wheeler M., “Hall-Littlewood plane partitions and KP”, Int. Math. Res. Not. IMRN, 2009, no. 14, 2597–2619  mathscinet  zmath  isi
    10. Nikolay M. Bogolyubov, “Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model”, SIGMA, 5 (2009), 052, 11 pp.  mathnet  crossref  mathscinet  zmath
    11. Bogoliubov N., Timonen J., “Correlation functions for a strongly coupled boson system and plane partitions”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369:1939 (2011), 1319–1333  crossref  mathscinet  zmath  adsnasa  isi  scopus
    12. Brubaker B., Bump D., Friedberg S., “Schur polynomials and the Yang–Baxter equation”, Comm. Math. Phys., 308:2 (2011), 281–301  crossref  mathscinet  zmath  adsnasa  isi  scopus
    13. Korff Ch., “Cylindric Versions of Specialised Macdonald Functions and a Deformed Verlinde Algebra”, Commun. Math. Phys., 318:1 (2013), 173–246  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    14. Jan Felipe Van Diejen, Erdal Emsiz, “Boundary Interactions for the Semi-Infinite $q$-Boson System and Hyperoctahedral Hall–Littlewood Polynomials”, SIGMA, 9 (2013), 077, 12 pp.  mathnet  crossref  mathscinet
    15. Felipe van Diejen J., Emsiz E., “The Semi-Infinite Q-Boson System with Boundary Interaction”, Lett. Math. Phys., 104:1 (2014), 103–113  crossref  mathscinet  zmath  isi  scopus
    16. N. M. Bogolyubov, “Combinatorics of a strongly coupled boson system”, Theoret. and Math. Phys., 181:1 (2014), 1132–1144  mathnet  crossref  crossref  adsnasa  isi  elib  elib
    17. Motegi K., Sakai K., “K-Theoretic Boson-Fermion Correspondence and Melting Crystals”, J. Phys. A-Math. Theor., 47:44 (2014), 445202  crossref  mathscinet  zmath  adsnasa  isi  scopus
    18. Pozsgay B., “Quantum Quenches and Generalized Gibbs Ensemble in a Bethe Ansatz Solvable Lattice Model of Interacting Bosons”, J. Stat. Mech.-Theory Exp., 2014, P10045  crossref  mathscinet  isi  scopus
    19. van Diejen J.F., Emsiz E., “Diagonalization of the Infinite Q-Boson System”, J. Funct. Anal., 266:9 (2014), 5801–5817  crossref  mathscinet  zmath  isi  scopus
    20. Borodin A., Corwin I., Petrov L., Sasamoto T., “Spectral Theory For the Q-Boson Particle System”, Compos. Math., 151:1 (2015), 1–67  crossref  mathscinet  zmath  isi  scopus
    21. Jan Felipe van Diejen, Erdal Emsiz, “Quantum Integrals for a Semi-Infinite $q$-Boson System with Boundary Interactions”, SIGMA, 11 (2015), 037, 9 pp.  mathnet  crossref  mathscinet
    22. N. M. Bogolyubov, K. L. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789–856  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    23. J. Math. Sci. (N. Y.), 216:1 (2016), 8–22  mathnet  crossref  mathscinet
    24. Cantini L., de Gier J., Wheeler M., “Matrix Product Formula For Macdonald Polynomials”, J. Phys. A-Math. Theor., 48:38 (2015), 384001  crossref  mathscinet  zmath  isi  elib  scopus
    25. Betea D., Wheeler M., “Refined Cauchy and Littlewood Identities, Plane Partitions and Symmetry Classes of Alternating Sign Matrices”, J. Comb. Theory Ser. A, 137 (2016), 126–165  crossref  mathscinet  zmath  isi  elib  scopus
    26. J. Math. Sci. (N. Y.), 224:2 (2017), 199–213  mathnet  crossref  mathscinet
    27. Wheeler M., Zinn-Justin P., “Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed bosons”, Adv. Math., 299 (2016), 543–600  crossref  mathscinet  zmath  isi  elib  scopus
    28. Duval A., Pasquier V., “q -bosons, Toda lattice, Pieri rules and Baxter q -operator”, J. Phys. A-Math. Theor., 49:15 (2016), 154006  crossref  mathscinet  zmath  isi  elib  scopus
    29. van Diejen J.F., Emsiz E., “Orthogonality of Bethe Ansatz Eigenfunctions For the Laplacian on a Hyperoctahedralweyl Alcove”, Commun. Math. Phys., 350:3 (2017), 1017–1067  crossref  mathscinet  zmath  isi
    30. Motegi K., “Combinatorial Properties of Symmetric Polynomials From Integrable Vertex Models in Finite Lattice”, J. Math. Phys., 58:9 (2017), 091703  crossref  mathscinet  zmath  isi  scopus
    31. Wang N., Wu K., “Vertex Operators, T-Boson Model and Weighted Plane Partitions in Finite Boxes”, Mod. Phys. Lett. B, 32:5 (2018), 1850061  crossref  mathscinet  isi  scopus
    32. Felipe van Diejen J., Emsiz E., Nahuel Zurrian I., “Completeness of the Bethe Ansatz For An Open -Boson System With Integrable Boundary Interactions”, Ann. Henri Poincare, 19:5 (2018), 1349–1384  crossref  mathscinet  zmath  isi  scopus
    33. Bogoliubov N., Malyshev C., “The Phase Model and the Norm-Trace Generating Function of Plane Partitions”, J. Stat. Mech.-Theory Exp., 2018, 083101  crossref  isi  scopus
    34. Wheeler M., Zinn-Justin P., “Hall Polynomials, Inverse Kostka Polynomials and Puzzles”, J. Comb. Theory Ser. A, 159 (2018), 107–163  crossref  mathscinet  zmath  isi  scopus
    35. Barraquand G., Borodin A., Corwin I., Wheeler M., “Stochastic Six-Vertex Model in a Half-Quadrant and Half-Line Open Asymmetric Simple Exclusion Process”, Duke Math. J., 167:13 (2018), 2457–2529  crossref  mathscinet  zmath  isi  scopus
    36. Wang N., “Young Diagrams in An N X M Box and the Kp Hierarchy”, Nucl. Phys. B, 937 (2018), 478–501  crossref  mathscinet  zmath  isi
    37. van Diejen J.F., Emsiz E., “Solutions of Convex Bethe Ansatz Equations and the Zeros of (Basic) Hypergeometric Orthogonal Polynomials”, Lett. Math. Phys., 109:1 (2019), 89–112  crossref  mathscinet  isi
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:407
    Full text:155
    First page:2

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021