RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional. Anal. i Prilozhen., 1992, Volume 26, Issue 4, Pages 83–86 (Mi faa823)  

This article is cited in 8 scientific papers (total in 8 papers)

Brief communications

Dirac reduction of the hamiltonian operator $\delta^{IJ}\frac{d}{dx}$ to a submanifold of euclidean space with flat normal connection

E. V. Ferapontov

Institute for Mathematical Modelling, Russian Academy of Sciences

Full text: PDF file (469 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 1992, 26:4, 298–300

Bibliographic databases:

UDC: 514.8
Received: 19.09.1991

Citation: E. V. Ferapontov, “Dirac reduction of the hamiltonian operator $\delta^{IJ}\frac{d}{dx}$ to a submanifold of euclidean space with flat normal connection”, Funktsional. Anal. i Prilozhen., 26:4 (1992), 83–86; Funct. Anal. Appl., 26:4 (1992), 298–300

Citation in format AMSBIB
\Bibitem{Fer92}
\by E.~V.~Ferapontov
\paper Dirac reduction of the hamiltonian operator $\delta^{IJ}\frac{d}{dx}$ to a submanifold of euclidean space with flat normal connection
\jour Funktsional. Anal. i Prilozhen.
\yr 1992
\vol 26
\issue 4
\pages 83--86
\mathnet{http://mi.mathnet.ru/faa823}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1209952}
\zmath{https://zbmath.org/?q=an:0802.58023}
\transl
\jour Funct. Anal. Appl.
\yr 1992
\vol 26
\issue 4
\pages 298--300
\crossref{https://doi.org/10.1007/BF01075056}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1992KZ15100013}


Linking options:
  • http://mi.mathnet.ru/eng/faa823
  • http://mi.mathnet.ru/eng/faa/v26/i4/p83

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. I. Mokhov, E. V. Ferapontov, “Hamiltonian Pairs Associated with Skew-Symmetric Killing Tensors on Spaces of Constant Curvature”, Funct. Anal. Appl., 28:2 (1994), 123–125  mathnet  crossref  mathscinet  zmath  isi
    2. E. V. Ferapontov, “Conformally plane metrics, systems of hydrodynamic type, and non-local Hamiltonian operators”, Russian Math. Surveys, 50:4 (1995), 811–813  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. V. L. Alekseev, “On non-local Hamiltonian operators of hydrodynamic type connected with Whitham's equations”, Russian Math. Surveys, 50:6 (1995), 1253–1255  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    4. O. I. Mokhov, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53:3 (1998), 515–622  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. A. Ya. Maltsev, “The Lorentz-Invariant Deformation of the Whitham System for the Nonlinear Klein–Gordon Equation”, Funct. Anal. Appl., 42:2 (2008), 103–115  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    6. Andrei Ya. Maltsev, “Whitham's Method and Dubrovin–Novikov Bracket in Single-Phase and Multiphase Cases”, SIGMA, 8 (2012), 103, 54 pp.  mathnet  crossref
    7. Maltsev A.Ya., “The Multi-Dimensional Hamiltonian Structures in the Whitham Method”, J. Math. Phys., 54:5 (2013), 053507  crossref  isi
    8. Maltsev A.Ya., “On the canonical forms of the multi-dimensional averaged Poisson brackets”, J. Math. Phys., 57:5 (2016), 053501  crossref  mathscinet  zmath  isi  elib  scopus
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:159
    Full text:57
    References:20
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019