General information
Latest issue
Impact factor
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Funktsional. Anal. i Prilozhen.:

Personal entry:
Save password
Forgotten password?

Funktsional. Anal. i Prilozhen., 1991, Volume 25, Issue 2, Pages 50–57 (Mi faa859)  

This article is cited in 26 scientific papers (total in 26 papers)

Intersection theory on the moduli space of curves

M. L. Kontsevich

Institute for Information Transmission Problems, AS USSR

Full text: PDF file (743 kB)
References: PDF file   HTML file

English version:
Functional Analysis and Its Applications, 1991, 25:2, 123–129

Bibliographic databases:

UDC: 519.46
Received: 14.12.1990

Citation: M. L. Kontsevich, “Intersection theory on the moduli space of curves”, Funktsional. Anal. i Prilozhen., 25:2 (1991), 50–57; Funct. Anal. Appl., 25:2 (1991), 123–129

Citation in format AMSBIB
\by M.~L.~Kontsevich
\paper Intersection theory on the moduli space of curves
\jour Funktsional. Anal. i Prilozhen.
\yr 1991
\vol 25
\issue 2
\pages 50--57
\jour Funct. Anal. Appl.
\yr 1991
\vol 25
\issue 2
\pages 123--129

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. L. Zarembo, L. O. Chekhov, “Multicut solutions of the matrix Kontsevich–Penner model”, Theoret. and Math. Phys., 93:2 (1992), 1328–1336  mathnet  crossref  mathscinet  zmath  isi
    2. B. Gato-Rivera, A. M. Semikhatov, “$d\le 1\cup d\ge 25$ and constrained KP hierarchy from BRST invariance in the $c\ne 3$ topological algebra”, Theoret. and Math. Phys., 95:2 (1993), 535–545  mathnet  crossref  mathscinet  zmath  isi
    3. V. I. Vakulenko, “Solution of Virasoro constraints for DKP hierarhy”, Theoret. and Math. Phys., 107:1 (1996), 435–440  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. A. V. Zabrodin, “A survey of Hirota's difference equations”, Theoret. and Math. Phys., 113:2 (1997), 1347–1392  mathnet  crossref  crossref  mathscinet  isi
    5. N. M. Adrianov, “An Analog of the Harer–Zagier Formula for Unicellular Bicolored Maps”, Funct. Anal. Appl., 31:3 (1997), 149–155  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. A. V. Marshakov, “Strings, SUSY gauge theories, and integrable systems”, Theoret. and Math. Phys., 121:2 (1999), 1409–1461  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. A. M. Perelomov, “A remark on the matrix Airy function”, Theoret. and Math. Phys., 123:2 (2000), 671–672  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. A. S. Gorsky, “Integrable many-body systems and gauge theories”, Theoret. and Math. Phys., 125:1 (2000), 1305–1348  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    9. L. O. Chekhov, “Matrix Models: Geometry of Moduli Spaces and Exact Solutions”, Theoret. and Math. Phys., 127:2 (2001), 557–618  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    10. A. S. Alexandrov, A. D. Mironov, A. Yu. Morozov, “Partition functions of matrix models as the first special functions of string theory: Finite Hermitian one-matrix model”, Theoret. and Math. Phys., 142:3 (2005), 349–411  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. A. V. Marshakov, “Matrix models, complex geometry, and integrable systems: I”, Theoret. and Math. Phys., 147:2 (2006), 583–636  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. A. V. Marshakov, “Matrix models, complex geometry, and integrable systems: II$^*$”, Theoret. and Math. Phys., 147:3 (2006), 777–820  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. G. B. Shabat, V. I. Zolotarskaya, “The Chekhov–Fock parametrization of Teichmüller spaces and dessins d'enfants”, J. Math. Sci., 158:1 (2009), 155–161  mathnet  crossref  mathscinet  elib  elib
    14. A. S. Alexandrov, A. D. Mironov, A. Yu. Morozov, “$M$-Theory of Matrix Models”, Theoret. and Math. Phys., 150:2 (2007), 153–164  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. A. V. Marshakov, “Non-Abelian gauge theories, prepotentials, and Abelian differentials”, Theoret. and Math. Phys., 159:2 (2009), 598–617  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    16. E. T. Akhmedov, Sh. R. Shakirov, “Gluings of Surfaces with Polygonal Boundaries”, Funct. Anal. Appl., 43:4 (2009), 245–253  mathnet  crossref  crossref  mathscinet  zmath  isi
    17. Alexandrov, A, “BGWM as second constituent of complex matrix model”, Journal of High Energy Physics, 2009, no. 12, 053  crossref  isi
    18. Morozov, A, “ON EQUIVALENCE OF TWO HURWITZ MATRIX MODELS”, Modern Physics Letters A, 24:33 (2009), 2659  crossref  mathscinet  zmath  adsnasa  isi
    19. Morozov, A, “Generation of matrix models by (W)over-cap-operators”, Journal of High Energy Physics, 2009, no. 4, 064  crossref  isi
    20. A. Yu. Morozov, “Unitary integrals and related matrix models”, Theoret. and Math. Phys., 162:1 (2010), 1–33  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    21. Mironov A., Morozov A., Shakirov Sh., “Matrix model conjecture for exact BS periods and Nekrasov functions”, Journal of High Energy Physics, 2010, no. 2, 030  crossref  isi
    22. A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory”, Theoret. and Math. Phys., 166:1 (2011), 1–22  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    23. A. B. Bogatyrev, “Elementary Construction of Strebel Differentials”, Math. Notes, 91:1 (2012), 135–138  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    24. JETP Letters, 95:11 (2012), 586–593  mathnet  crossref  isi  elib  elib
    25. A. V. Popolitov, “Relation between Nekrasov functions and Bohr–Sommerfeld periods in the pure $SU(N)$ case”, Theoret. and Math. Phys., 178:2 (2014), 239–252  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    26. A. B. Bogatyrev, “Combinatorial analysis of the period mapping: the topology of 2D fibres”, Sb. Math., 210:11 (2019), 1531–1562  mathnet  crossref  crossref  adsnasa  isi
  • Функциональный анализ и его приложения Functional Analysis and Its Applications
    Number of views:
    This page:790
    Full text:333
    First page:1

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020