RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Фундамент. и прикл. матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Фундамент. и прикл. матем., 2007, том 13, выпуск 4, страницы 3–29 (Mi fpm1060)  

Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)

Автоморфизмы групп Шевалле типов $B_2$ и $G_2$ над локальными кольцами

Е. И. Бунина

Московский государственный университет им. М. В. Ломоносова

Аннотация: В работе доказано, что любой автоморфизм присоединённой группы Шевалле типов $B_2$ или $G_2$ стандартен, т.е. является композицией “внутреннего”, кольцевого и центрального автоморфизмов.

Ключевые слова: группа Шевалле, локальное кольцо, автоморфизм, полупростая алгебра Ли.

Полный текст: PDF файл (300 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Journal of Mathematical Sciences (New York), 2008, 155:6, 795–814

Реферативные базы данных:

УДК: 512.54

Образец цитирования: Е. И. Бунина, “Автоморфизмы групп Шевалле типов $B_2$ и $G_2$ над локальными кольцами”, Фундамент. и прикл. матем., 13:4 (2007), 3–29; J. Math. Sci., 155:6 (2008), 795–814

Цитирование в формате AMSBIB
\RBibitem{Bun07}
\by Е.~И.~Бунина
\paper Автоморфизмы групп Шевалле типов $B_2$ и~$G_2$ над локальными кольцами
\jour Фундамент. и прикл. матем.
\yr 2007
\vol 13
\issue 4
\pages 3--29
\mathnet{http://mi.mathnet.ru/fpm1060}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2366234}
\zmath{https://zbmath.org/?q=an:05497355}
\elib{https://elibrary.ru/item.asp?id=11162672}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 155
\issue 6
\pages 795--814
\crossref{https://doi.org/10.1007/s10958-008-9242-9}
\elib{https://elibrary.ru/item.asp?id=13578234}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57349100330}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/fpm1060
  • http://mi.mathnet.ru/rus/fpm/v13/i4/p3

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Е. И. Бунина, “Автоморфизмы групп Шевалле типа $B_l$ над локальными кольцами с 1/2”, Фундамент. и прикл. матем., 15:7 (2009), 3–46  mathnet  mathscinet  elib; E. I. Bunina, “Automorphisms of Chevalley groups of type $B_l$ over local rings with 1/2”, J. Math. Sci., 169:5 (2010), 557–588  crossref  elib
    2. Е. И. Бунина, “Автоморфизмы групп Шевалле типов $A_l$, $D_l$, $E_l$ над локальными кольцами с необратимой двойкой”, Фундамент. и прикл. матем., 15:7 (2009), 47–80  mathnet  mathscinet  elib; E. I. Bunina, “Automorphisms of Chevalley groups of types $A_l$, $D_l$, $E_l$ over local rings without 1/2”, J. Math. Sci., 169:5 (2010), 589–613  crossref  elib
    3. Е. И. Бунина, “Элементарная эквивалентность групп Шевалле над локальными кольцами”, Матем. сб., 201:3 (2010), 3–20  mathnet  crossref  mathscinet  zmath  adsnasa  elib; E. I. Bunina, “Elementary equivalence of Chevalley groups over local rings”, Sb. Math., 201:3 (2010), 321–337  crossref  isi
    4. Bunina E.I., “Automorphisms of Chevalley groups of type $F_4$ over local rings with 1/2”, J. Algebra, 323:8 (2010), 2270–2289  crossref  mathscinet  zmath  isi  elib
    5. Н. А. Вавилов, “Строение изотропных редуктивных групп”, Тр. Ин-та матем., 18:1 (2010), 15–27  mathnet
    6. Bunina E.I., “Automorphisms of Chevalley Groups of Different Types Over Commutative Rings”, J. Algebra, 355:1 (2012), 154–170  crossref  mathscinet  zmath  isi  elib
    7. Е. И. Бунина, П. А. Верёвкин, “Автоморфизмы групп Шевалле типа $G_2$ над локальными кольцами с необратимой двойкой”, Фундамент. и прикл. матем., 17:7 (2012), 49–66  mathnet; E. I. Bunina, P. A. Veryovkin, “Automorphisms of Chevalley groups of type $G_2$ over local rings without $1/2$”, J. Math. Sci., 197:4 (2014), 479–491  crossref
    8. Е. И. Бунина, А. В. Михалёв, И. О. Соловьёв, “Элементарная эквивалентность стабильных линейных групп над локальными коммутативными кольцами с $1/2$”, Фундамент. и прикл. матем., 21:1 (2016), 65–78  mathnet; E. I. Bunina, A. V. Mikhalev, I. O. Solovyev, “Elementary equivalence of stable linear groups over local commutative rings with $1/2$”, J. Math. Sci., 233:5 (2018), 646–655  crossref
    9. Е. И. Бунина, “Изоморфизмы и элементарная эквивалентность групп Шевалле над коммутативными кольцами”, Матем. сб., 210:8 (2019), 3–28  mathnet  crossref  adsnasa  elib; E. I. Bunina, “Isomorphisms and elementary equivalence of Chevalley groups over commutative rings”, Sb. Math., 210:8 (2019), 1067–1091  crossref  isi
  • Фундаментальная и прикладная математика
    Просмотров:
    Эта страница:298
    Полный текст:103
    Литература:47
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021