|
On the Cohen–Lusk theorem
A. Yu. Volovikov Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
Abstract:
Let $G$ be a finite group and $X$ be a $G$-space. For a map $f\colon X\to\mathbb R^m$, the partial coincidence set $A(f,k)$, $k\leq|G|$, is the set of points $x\in X$ such that there exist $k$ elements $g_1,…,g_k$ of the group $G$, for which $f(g_1x)=…=f(g_kx)$ hold. We prove that the partial coincidence set is nonempty for $G=\mathbb Z_p^n$ under some additional assumptions.
Full text:
PDF file (121 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2009, 159:6, 790–793
Bibliographic databases:
UDC:
515.14
Citation:
A. Yu. Volovikov, “On the Cohen–Lusk theorem”, Fundam. Prikl. Mat., 13:8 (2007), 61–67; J. Math. Sci., 159:6 (2009), 790–793
Citation in format AMSBIB
\Bibitem{Vol07}
\by A.~Yu.~Volovikov
\paper On the Cohen--Lusk theorem
\jour Fundam. Prikl. Mat.
\yr 2007
\vol 13
\issue 8
\pages 61--67
\mathnet{http://mi.mathnet.ru/fpm1108}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2475581}
\zmath{https://zbmath.org/?q=an:1181.55004}
\elib{https://elibrary.ru/item.asp?id=11162711}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 159
\issue 6
\pages 790--793
\crossref{https://doi.org/10.1007/s10958-009-9470-7}
\elib{https://elibrary.ru/item.asp?id=13604516}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67349187989}
Linking options:
http://mi.mathnet.ru/eng/fpm1108 http://mi.mathnet.ru/eng/fpm/v13/i8/p61
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 256 | Full text: | 89 | References: | 34 |
|