RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1995, Volume 1, Issue 4, Pages 1129–1132 (Mi fpm111)  

Short communications

Two-dimensional real triangle quasirepresentations of groups

V. A. Faiziev


Abstract: Definition. By two-dimensional real triangle quasirepresentation of group $G$ we mean the mapping $\Phi$ of group $G$ into the group of two-dimensional real triangle matrices $T(2,R)$ such that if
$$ \Phi (x)=\begin{pmatrix} \alpha(x) &\varphi(x)
0 &\sigma(x) \end{pmatrix}, $$
then: \begin{tabular}[t]{l} 1) $\alpha, \sigma$ are homomorphisms of group $G$ into $R^*$;
2) the set $\{\|\Phi(xy)-\Phi(x)\Phi(y)\|; x,y\in G\}$ is bounded. \end{tabular}
For brevity we shall call such mapping a quasirepresentation or a $(\alpha,\sigma)$-quasirepresentation for given diagonal matrix elements $\alpha$ and $\sigma$. We shall say that quasirepresentation is nontrivial if it is neither representation nor bounded. In this paper the criterion of existence of nontrivial $(\alpha,\sigma)$-quasirepresentation on groups is established. It is shown that if $G=A\ast B$ is the free product of finite nontrivial groups $A$ and $B$ and $A$ or $B$ has more than two elements then for every homomorphism $\alpha$ of group $G$ into $R^*$ there are $(\alpha,\varepsilon)$-, $(\varepsilon,\alpha)$- and $(\alpha,\alpha)$-quasirepresentation. Here the homomorphism $\varepsilon$ maps $G$ into 1.

Full text: PDF file (175 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 519.46
Received: 01.05.1995

Citation: V. A. Faiziev, “Two-dimensional real triangle quasirepresentations of groups”, Fundam. Prikl. Mat., 1:4 (1995), 1129–1132

Citation in format AMSBIB
\Bibitem{Fai95}
\by V.~A.~Faiziev
\paper Two-dimensional real triangle quasirepresentations of groups
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 4
\pages 1129--1132
\mathnet{http://mi.mathnet.ru/fpm111}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1791800}
\zmath{https://zbmath.org/?q=an:0867.20007}


Linking options:
  • http://mi.mathnet.ru/eng/fpm111
  • http://mi.mathnet.ru/eng/fpm/v1/i4/p1129

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:171
    Full text:50
    References:29
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020