RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2008, Volume 14, Issue 2, Pages 3–12 (Mi fpm1111)  

This article is cited in 6 scientific papers (total in 6 papers)

Rings over which all modules are $I_0$-modules. II

A. N. Abyzova, A. A. Tuganbaevb

a Kazan State University
b Russian State University of Trade and Economics

Abstract: All right $R$-modules are $I_0$-modules if and only if either $R$ is a right SV-ring or $R/I^{(2)}(R)$ is an Artinian serial ring such that the square of the Jacobson radical of $R/I^{(2)}(R)$ is equal to zero.

Full text: PDF file (136 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2009, 162:5, 587–593

Bibliographic databases:

UDC: 512.55

Citation: A. N. Abyzov, A. A. Tuganbaev, “Rings over which all modules are $I_0$-modules. II”, Fundam. Prikl. Mat., 14:2 (2008), 3–12; J. Math. Sci., 162:5 (2009), 587–593

Citation in format AMSBIB
\Bibitem{AbyTug08}
\by A.~N.~Abyzov, A.~A.~Tuganbaev
\paper Rings over which all modules are $I_0$-modules.~II
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 2
\pages 3--12
\mathnet{http://mi.mathnet.ru/fpm1111}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2475592}
\zmath{https://zbmath.org/?q=an:1185.16005}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 162
\issue 5
\pages 587--593
\crossref{https://doi.org/10.1007/s10958-009-9647-0}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350628956}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1111
  • http://mi.mathnet.ru/eng/fpm/v14/i2/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. A. N. Abyzov, A. A. Tuganbaev, “Submodules and direct summands”, J. Math. Sci., 164:1 (2010), 1–20  mathnet  crossref  mathscinet
    2. A. N. Abyzov, “Generalized $SV$-rings of bounded index of nilpotency”, Russian Math. (Iz. VUZ), 55:12 (2011), 1–10  mathnet  crossref  mathscinet
    3. A. N. Abyzov, “Regular semiartinian rings”, Russian Math. (Iz. VUZ), 56:1 (2012), 1–8  mathnet  crossref  mathscinet
    4. A. N. Abyzov, “On some classes of semiartinian rings”, Siberian Math. J., 53:5 (2012), 763–771  mathnet  crossref  mathscinet  isi
    5. A. N. Abyzov, Yu. A. Alpin, N. A. Koreshkov, M. F. Nasrutdinov, S. N. Tronin, “Algebraicheskie issledovaniya v Kazanskom universitete ot V. V. Morozova do nashikh dnei”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 154, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2012, 44–59  mathnet
    6. A. N. Abyzov, “$I_0^*$-modules”, Russian Math. (Iz. VUZ), 58:8 (2014), 1–14  mathnet  crossref
  • Фундаментальная и прикладная математика
    Number of views:
    This page:330
    Full text:89
    References:45
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019