RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2008, Volume 14, Issue 2, Pages 69–100 (Mi fpm1114)  

This article is cited in 10 scientific papers (total in 10 papers)

Automorphisms of the semigroup of invertible matrices with nonnegative elements over commutative partially ordered rings

E. I. Bunina, P. P. Semenov

M. V. Lomonosov Moscow State University

Abstract: We describe automorphisms of the semigroup $G_n(R)$ of invertible matrices with nonnegative coefficients in the case where $R$ is a commutative partially ordered ring containing $\mathbb Q$ and $n\ge3$.

Full text: PDF file (298 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2009, 162:5, 633–655

Bibliographic databases:

UDC: 512.643+512.552.2

Citation: E. I. Bunina, P. P. Semenov, “Automorphisms of the semigroup of invertible matrices with nonnegative elements over commutative partially ordered rings”, Fundam. Prikl. Mat., 14:2 (2008), 69–100; J. Math. Sci., 162:5 (2009), 633–655

Citation in format AMSBIB
\Bibitem{BunSem08}
\by E.~I.~Bunina, P.~P.~Semenov
\paper Automorphisms of the semigroup of invertible matrices with nonnegative elements over commutative partially ordered rings
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 2
\pages 69--100
\mathnet{http://mi.mathnet.ru/fpm1114}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2475595}
\zmath{https://zbmath.org/?q=an:05660178}
\elib{http://elibrary.ru/item.asp?id=12197919}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 162
\issue 5
\pages 633--655
\crossref{https://doi.org/10.1007/s10958-009-9650-5}
\elib{http://elibrary.ru/item.asp?id=15301435}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350676301}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1114
  • http://mi.mathnet.ru/eng/fpm/v14/i2/p69

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. I. Bunina, P. P. Semenov, “Elementary equivalence of semigroups of invertible matrices with nonnegative elements over commutative partially ordered rings”, J. Math. Sci., 163:5 (2009), 493–499  mathnet  crossref  mathscinet  elib  elib
    2. E. I. Bunina, L. V. Tupikina, “Automorphisms of the semigroup of nonnegative invertible matrices of order $2$ over rings”, J. Math. Sci., 183:3 (2012), 305–313  mathnet  crossref  mathscinet
    3. E. I. Bunina, “Automorphisms of the Semigroup of Nonnegative Invertible Matrices of Order Two over Partially Ordered Commutative Rings”, Math. Notes, 91:1 (2012), 3–11  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    4. P. P. Semenov, “Automorphisms of semigroups of invertible matrices with nonnegative integer elements”, Sb. Math., 203:9 (2012), 1342–1356  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. P. P. Semenov, “Endomorphisms of semigroups of invertible nonnegative matrices over ordered rings”, J. Math. Sci., 193:4 (2013), 591–600  mathnet  crossref
    6. O. I. Tsarkov, “Endomorphisms of the semigroup $G_2(R)$ over partially ordered commutative rings without zero divisors and with $1/2$”, J. Math. Sci., 201:4 (2014), 534–551  mathnet  crossref  mathscinet
    7. E. I. Bunina, V. V. Nemiro, “The group of fractions of the semigroup of invertible nonnegative matrices of order three over a field”, J. Math. Sci., 206:5 (2015), 474–485  mathnet  crossref  mathscinet
    8. O. I. Tsarkov, “Extension of endomorphisms of the subsemigroup $\mathrm{GE}^+_2(R)$ to endomorphisms of $\mathrm{GE}^+_2(R[x])$, where $R$ is a partially-ordered commutative ring without zero divisors”, J. Math. Sci., 206:6 (2015), 711–733  mathnet  crossref  mathscinet
    9. E. I. Bunina, A. V. Mikhalev, V. V. Nemiro, “Groups of quotients of semigroups of invertible nonnegative matrices over skewfields”, J. Math. Sci., 233:5 (2018), 640–645  mathnet  crossref
    10. A. V. Litavrin, “Avtomorfizmy nekotorykh magm poryadka $k+k^2$”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 26 (2018), 47–61  mathnet  crossref
  • Фундаментальная и прикладная математика
    Number of views:
    This page:241
    Full text:61
    References:49
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019