RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2008, Volume 14, Issue 4, Pages 87–107 (Mi fpm1127)  

This article is cited in 3 scientific papers (total in 3 papers)

The principal kernels of semifields of continuous positive functions

E. M. Vechtomov, D. V. Chuprakov

Vyatka State University of Humanities

Abstract: This work is devoted to the research of kernel lattices of semifields of continuous positive functions defined on some topological space. It is established that they are lattices with pseudo-complement. New characterizations of the following properties of topological spaces are obtained in terms of kernels, predominantly principal kernels, and semifields of continuous functions: to be an F-space, to be a P-space, basical and extremal disconnectedness, pseudo-compactness, and finiteness.

Full text: PDF file (198 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2009, 163:5, 500–514

Bibliographic databases:

UDC: 512.556

Citation: E. M. Vechtomov, D. V. Chuprakov, “The principal kernels of semifields of continuous positive functions”, Fundam. Prikl. Mat., 14:4 (2008), 87–107; J. Math. Sci., 163:5 (2009), 500–514

Citation in format AMSBIB
\Bibitem{VecChu08}
\by E.~M.~Vechtomov, D.~V.~Chuprakov
\paper The principal kernels of semifields of continuous positive functions
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 4
\pages 87--107
\mathnet{http://mi.mathnet.ru/fpm1127}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2482035}
\elib{http://elibrary.ru/item.asp?id=12174972}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 163
\issue 5
\pages 500--514
\crossref{https://doi.org/10.1007/s10958-009-9688-4}
\elib{http://elibrary.ru/item.asp?id=15310276}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70649099044}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1127
  • http://mi.mathnet.ru/eng/fpm/v14/i4/p87

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. M. Vechtomov, E. N. Lubyagina, “The semiring of continous $[0,1]$-valued functions”, J. Math. Sci., 191:5 (2013), 633–653  mathnet  crossref
    2. E. M. Vechtomov, A. V. Mikhalev, V. V. Sidorov, “Semirings of continuous functions”, J. Math. Sci., 237:2 (2019), 191–244  mathnet  crossref
    3. Perri T., Rowen L.H., “Kernels in Tropical Geometry and a Jordan-Holder Theorem”, J. Algebra. Appl., 17:4 (2018), 1850066  crossref  mathscinet  zmath  isi  scopus
  • Фундаментальная и прикладная математика
    Number of views:
    This page:267
    Full text:91
    References:43
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020