RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2008, Volume 14, Issue 4, Pages 109–120 (Mi fpm1128)  

This article is cited in 2 scientific papers (total in 2 papers)

On the generalized Ritt problem as a computational problem

O. D. Golubitskya, M. V. Kondrat'evab, A. I. Ovchinnikovc

a University of Western Ontario
b M. V. Lomonosov Moscow State University
c University of Illinois at Chicago

Abstract: The Ritt problem asks if there is an algorithm that decides whether one prime differential ideal is contained in another one if both are given by their characteristic sets. We give several equivalent formulations of this problem. In particular, we show that it is equivalent to testing whether a differential polynomial is a zero divisor modulo a radical differential ideal. The technique used in the proof of this equivalence yields algorithms for computing a canonical decomposition of a radical differential ideal into prime components and a canonical generating set of a radical differential ideal. Both proposed representations of a radical differential ideal are independent of the given set of generators and can be made independent of the ranking.

Full text: PDF file (146 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2009, 163:5, 515–522

Bibliographic databases:

UDC: 512.628

Citation: O. D. Golubitsky, M. V. Kondrat'eva, A. I. Ovchinnikov, “On the generalized Ritt problem as a computational problem”, Fundam. Prikl. Mat., 14:4 (2008), 109–120; J. Math. Sci., 163:5 (2009), 515–522

Citation in format AMSBIB
\Bibitem{GolKonOvc08}
\by O.~D.~Golubitsky, M.~V.~Kondrat'eva, A.~I.~Ovchinnikov
\paper On the generalized Ritt problem as a~computational problem
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 4
\pages 109--120
\mathnet{http://mi.mathnet.ru/fpm1128}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2482036}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 163
\issue 5
\pages 515--522
\crossref{https://doi.org/10.1007/s10958-009-9689-3}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70649115365}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1128
  • http://mi.mathnet.ru/eng/fpm/v14/i4/p109

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Harrison-Trainor M., Klys J., Moosa R., “Nonstandard Methods for Bounds in Differential Polynomial Rings”, J. Algebra, 360 (2012), 71–86  crossref  mathscinet  zmath  isi  elib
    2. Li W., Li Y.-H., “Computation of Differential Chow Forms For Ordinary Prime Differential Ideals”, Adv. Appl. Math., 72:SI (2016), 77–112  crossref  mathscinet  zmath  isi
  • Фундаментальная и прикладная математика
    Number of views:
    This page:169
    Full text:58
    References:40
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020