RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2008, Volume 14, Issue 5, Pages 139–154 (Mi fpm1146)  

This article is cited in 6 scientific papers (total in 6 papers)

On the chromatic number of $\mathbb R^9$

A. B. Kupavskii, A. M. Raigorodskii

M. V. Lomonosov Moscow State University

Abstract: In this work, the previous lower bound is considerably strengthened for the chromatic number of the nine-dimensional space.

Full text: PDF file (159 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2009, 163:6, 720–731

Bibliographic databases:

UDC: 519.174.7

Citation: A. B. Kupavskii, A. M. Raigorodskii, “On the chromatic number of $\mathbb R^9$”, Fundam. Prikl. Mat., 14:5 (2008), 139–154; J. Math. Sci., 163:6 (2009), 720–731

Citation in format AMSBIB
\Bibitem{KupRai08}
\by A.~B.~Kupavskii, A.~M.~Raigorodskii
\paper On the chromatic number of~$\mathbb R^9$
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 5
\pages 139--154
\mathnet{http://mi.mathnet.ru/fpm1146}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2533583}
\elib{https://elibrary.ru/item.asp?id=12174991}
\transl
\jour J. Math. Sci.
\yr 2009
\vol 163
\issue 6
\pages 720--731
\crossref{https://doi.org/10.1007/s10958-009-9708-4}
\elib{https://elibrary.ru/item.asp?id=15296174}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-73249148833}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1146
  • http://mi.mathnet.ru/eng/fpm/v14/i5/p139

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kupavskii A.B., “Lifting of a bound for the chromatic number of $\mathbb R^n$ to higher dimensions”, Dokl. Math., 80:3 (2009), 833–836  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    2. A. B. Kupavskii, “On the colouring of spheres embedded in $\mathbb R^n$”, Sb. Math., 202:6 (2011), 859–886  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. A. B. Kupavskii, “Explicit and probabilistic constructions of distance graphs with small clique numbers and large chromatic numbers”, Izv. Math., 78:1 (2014), 59–89  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Raigorodskii A.M., “Cliques and Cycles in Distance Graphs and Graphs of Diameters”, Discrete Geometry and Algebraic Combinatorics, Contemporary Mathematics, 625, eds. Barg A., Musin O., Amer Mathematical Soc, 2014, 93–109  crossref  mathscinet  zmath  isi
    5. Cherkashin D.D., Raigorodskii A.M., “On the Chromatic Numbers of Low-Dimensional Spaces”, Dokl. Math., 95:1 (2017), 5–6  crossref  mathscinet  zmath  isi  scopus
    6. L. I. Bogolubsky, A. M. Raigorodskii, “A Remark on Lower Bounds for the Chromatic Numbers of Spaces of Small Dimension with Metrics $\ell_1$ and $\ell_2$”, Math. Notes, 105:2 (2019), 180–203  mathnet  crossref  crossref  isi  elib
  • Фундаментальная и прикладная математика
    Number of views:
    This page:443
    Full text:231
    References:37

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020