RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2008, Volume 14, Issue 7, Pages 151–156 (Mi fpm1180)  

This article is cited in 1 scientific paper (total in 1 paper)

Acts over semilattices

M. Yu. Maksimovskiy

Moscow State Institute of Electronic Technology

Abstract: In this paper, we consider acts over commutative semigroups of idempotents (semilattices). We prove that an act over a semilattice is a partially ordered set. We obtain a full description of acts over a finite chain and a necessary condition for a partially ordered set to be an act over some semilattice.

Full text: PDF file (95 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2010, 164:2, 255–259

Bibliographic databases:

UDC: 512.579

Citation: M. Yu. Maksimovskiy, “Acts over semilattices”, Fundam. Prikl. Mat., 14:7 (2008), 151–156; J. Math. Sci., 164:2 (2010), 255–259

Citation in format AMSBIB
\Bibitem{Mak08}
\by M.~Yu.~Maksimovskiy
\paper Acts over semilattices
\jour Fundam. Prikl. Mat.
\yr 2008
\vol 14
\issue 7
\pages 151--156
\mathnet{http://mi.mathnet.ru/fpm1180}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2533604}
\transl
\jour J. Math. Sci.
\yr 2010
\vol 164
\issue 2
\pages 255--259
\crossref{https://doi.org/10.1007/s10958-009-9726-2}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71649113414}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1180
  • http://mi.mathnet.ru/eng/fpm/v14/i7/p151

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. T. V. Apraksina, M. Yu. Maksimovskii, “Poligony i chastichnye poligony nad polureshetkami”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:1 (2012), 3–7  mathnet  crossref  elib
  • Фундаментальная и прикладная математика
    Number of views:
    This page:222
    Full text:106
    References:35

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020