RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1995, Volume 1, Issue 4, Pages 1009–1018 (Mi fpm119)  

On asymptotic behavior of some class of random matrix iterations

A. Yu. Plakhov

Institute for Physico-Technical Problems

Abstract: In the paper iterations $J_{m+1}=J_m-\varepsilon J_mL_{S_m}J_m$, $m=0,1,2,\ldots$; $\varepsilon>0$ are considered. $J_m$ and $L_{S_m}$ are selfadjoint operators on $\mathbb R^N$, $L_{S_m}=(\cdot,S_m)S_m$, with $S_m$ being independent identically distributed random vectors which satisfy some additional conditions. Initial opetator $J_0$ is nonrandom. Asymptotic behavior of the rescaled operator $\tilde{J_m}=\|J_m\|^{-1}J_m$ is examined. Problems of this type appear in neural network theory when studying REM sleep phenomenon. It is proven that one of the following three relations holds almost surely: I. $\lim_{m\to\infty}\tilde{J}_m=P_{\mathcal L}$; II. $\lim_{m\to\infty}\tilde{J}_m=-P_{\xi}$; III. $J_m=0$ starting from some $m_0$; here $P_{\mathcal L}$ and $P_{\xi}$ are orthogonal projectors on random subspace $\mathcal L\subset\mathbb R^N$ and one-dimensional subspace spanned by random nonzero vector $\xi$, respectively. Denote $P_+(\varepsilon)$ and $P_-(\varepsilon)$ the probabilities of asymptotic behaviors I and II. For $J_0$ being nonzero positive semidefinite it is shown that $\lim_{\varepsilon\to+0}P_+(\varepsilon)=1$, $\lim_{\varepsilon\to+\infty}P_-(\varepsilon)=1$, but if $J_0$ has at least one negative eigenvalue, then $P_-(\varepsilon)\equiv1$.

Full text: PDF file (389 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 519.21.219.5
Received: 01.05.1995

Citation: A. Yu. Plakhov, “On asymptotic behavior of some class of random matrix iterations”, Fundam. Prikl. Mat., 1:4 (1995), 1009–1018

Citation in format AMSBIB
\Bibitem{Pla95}
\by A.~Yu.~Plakhov
\paper On asymptotic behavior of some class of random matrix iterations
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 4
\pages 1009--1018
\mathnet{http://mi.mathnet.ru/fpm119}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1791625}
\zmath{https://zbmath.org/?q=an:0871.60006}


Linking options:
  • http://mi.mathnet.ru/eng/fpm119
  • http://mi.mathnet.ru/eng/fpm/v1/i4/p1009

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:140
    Full text:48
    References:20
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020