RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1995, Volume 1, Issue 4, Pages 1125–1128 (Mi fpm123)  

Short communications

On the convergence in $H^{s}$-norm of the spectral expansions corresponding to the differential operators with singularity

V. S. Serov

M. V. Lomonosov Moscow State University

Abstract: In this work we prove the convergence in the norm of the Sobolev spaces $H^s(\mathbb R^{N})$ of the spectral expansions corresponding to the self-adjont extansions in $L^2(\mathbb R^{N})$ of the operators in the following way:
$$ A(x,D)=P(D)+Q(x), $$
where $P(D)$ is the self-adjont elliptic operator with constant coefficients and of order $m$ and real potential $Q(x)$ belongs to Kato space. As a consequence of this result we have the uniform convergence of these expansions for the case $m>\frac{N}{2}$.

Full text: PDF file (136 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 517.95
Received: 01.02.1995

Citation: V. S. Serov, “On the convergence in $H^{s}$-norm of the spectral expansions corresponding to the differential operators with singularity”, Fundam. Prikl. Mat., 1:4 (1995), 1125–1128

Citation in format AMSBIB
\Bibitem{Ser95}
\by V.~S.~Serov
\paper On the convergence in $H^{s}$-norm of the spectral expansions corresponding to the differential operators with singularity
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 4
\pages 1125--1128
\mathnet{http://mi.mathnet.ru/fpm123}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1791799}
\zmath{https://zbmath.org/?q=an:0867.35067}


Linking options:
  • http://mi.mathnet.ru/eng/fpm123
  • http://mi.mathnet.ru/eng/fpm/v1/i4/p1125

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:151
    Full text:64
    References:36
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020