RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2010, Volume 16, Issue 1, Pages 151–155 (Mi fpm1297)  

This article is cited in 2 scientific papers (total in 2 papers)

Hausdorff metric on faces of the $n$-cube

G. G. Ryabov

M. V. Lomonosov Moscow State University

Abstract: The Hausdorff metric on all faces of the unit $n$-cube ($\mathrm I^n$) is considered. The notion of a cubant is used; it was introduced as an $n$-digit quaternary code of a $k$-dimensional face containing the Cartesian product of $k$ frame unit segments and the face translation code within $\mathrm I^n$. The cubants form a semigroup with a unit (monoid) with respect to the given operation of multiplication. A calculation of Hausdorff metric based on the generalization of the Hamming metric for binary codes is considered. The supercomputing issues are discussed.

Full text: PDF file (93 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2011, 177:4, 619–622

Bibliographic databases:

UDC: 512.531+515.124+004.2

Citation: G. G. Ryabov, “Hausdorff metric on faces of the $n$-cube”, Fundam. Prikl. Mat., 16:1 (2010), 151–155; J. Math. Sci., 177:4 (2011), 619–622

Citation in format AMSBIB
\Bibitem{Rya10}
\by G.~G.~Ryabov
\paper Hausdorff metric on faces of the $n$-cube
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 1
\pages 151--155
\mathnet{http://mi.mathnet.ru/fpm1297}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2786498}
\elib{http://elibrary.ru/item.asp?id=16350304}
\transl
\jour J. Math. Sci.
\yr 2011
\vol 177
\issue 4
\pages 619--622
\crossref{https://doi.org/10.1007/s10958-011-0487-3}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052267796}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1297
  • http://mi.mathnet.ru/eng/fpm/v16/i1/p151

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ryabov G.G., Serov V.A., “O simvolnykh vychisleniyakh v reshetochnom prostranstve $\mathbb R_c^n$”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 12:1 (2011), 409–416  mathnet  elib
    2. Ryabov G.G., Serov V.A., “Biektivnoe kodirovanie v konstruktivnom mire $\mathbb R_c^n$”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 13:1 (2012), 465–470  mathnet  mathscinet  elib
  • Фундаментальная и прикладная математика
    Number of views:
    This page:490
    Full text:260
    References:75
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019