RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2012, Volume 17, Issue 1, Pages 23–32 (Mi fpm1387)  

This article is cited in 1 scientific paper (total in 1 paper)

Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$

A. R. Alimov

M. V. Lomonosov Moscow State University

Abstract: A subset $M$ of a normed linear space $X$ is said to be $R$-weakly convex ($R>0$ is fixed) if the intersection $(D_R(x,y)\setminus\{x,y\})\cap M$ is nonempty for all $x,y\in M$, $0<\|x-y\|<2R$. Here $D_R(x,y)$ is the intersection of all the balls of radius $R$ that contain $x,y$. The paper is concerned with connectedness of $R$-weakly convex sets in $C(Q)$-spaces. It will be shown that any $R$-weakly convex subset $M$ of $C(Q)$ is locally $\mathrm m$-connected (locally Menger-connected) and each connected component of a boundedly compact $R$-weakly convex subset $M$ of $C(Q)$ is monotone path-connected and is a sun in $C(Q)$. Also, we show that a boundedly compact subset $M$ of $C(Q)$ is $R$-weakly convex for some $R>0$ if and only if $M$ is a disjoint union of monotonically path-connected suns in $C(Q)$, the Hausdorff distance between each pair of the components of $M$ being at least $2R$.

Full text: PDF file (149 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2012, 185:3, 360–366

Document Type: Article
UDC: 517.982.252+517.982.256

Citation: A. R. Alimov, “Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$”, Fundam. Prikl. Mat., 17:1 (2012), 23–32; J. Math. Sci., 185:3 (2012), 360–366

Citation in format AMSBIB
\Bibitem{Ali12}
\by A.~R.~Alimov
\paper Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 1
\pages 23--32
\mathnet{http://mi.mathnet.ru/fpm1387}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 185
\issue 3
\pages 360--366
\crossref{https://doi.org/10.1007/s10958-012-0920-2}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866329641}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1387
  • http://mi.mathnet.ru/eng/fpm/v17/i1/p23

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. R. Alimov, “Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding”, Eurasian Math. J., 3:2 (2012), 21–30  mathnet  mathscinet  zmath
  • Фундаментальная и прикладная математика
    Number of views:
    This page:166
    Full text:51
    References:27
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019