RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2012, Volume 17, Issue 2, Pages 75–85 (Mi fpm1401)  

This article is cited in 3 scientific papers (total in 3 papers)

When are all group codes of a noncommutative group Abelian (a computational approach)?

C. García Pilladoa, S. Gonzáleza, V. T. Markovb, C. Martíneza, A. A. Nechaevb

a Universidad de Oviedo, Spain
b M. V. Lomonosov Moscow State University

Abstract: Let $G$ be a finite group and $F$ be a field. Any linear code over $F$ that is permutation equivalent to some code defined by an ideal of the group ring $FG$ will be called a $G$-code. The theory of these “abstract” group codes was developed in 2009. A code is called Abelian if it is an $A$-code for some Abelian group $A$. Some conditions were given that all $G$-codes for some group $G$ are Abelian but no examples of non-Abelian group codes were known at that time. We use a computer algebra system GAP to show that all $G$-codes over any field are Abelian if $|G|<128$ and $|G|\notin\{24,48,54,60,64,72,96,108,120\}$, but for $F=\mathbb F_5$ and $G=\mathrm S_4$ there exist non-Abelian $G$-codes over $F$. It is also shown that the existence of left non-Abelian group codes for a given group depends in general on the field of coefficients, while for (two-sided) group codes the corresponding question remains open.

Full text: PDF file (136 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2012, 186:4, 578–585

UDC: 519.725+512.552.7

Citation: C. García Pillado, S. González, V. T. Markov, C. Martínez, A. A. Nechaev, “When are all group codes of a noncommutative group Abelian (a computational approach)?”, Fundam. Prikl. Mat., 17:2 (2012), 75–85; J. Math. Sci., 186:4 (2012), 578–585

Citation in format AMSBIB
\Bibitem{GarGonMar12}
\by C.~Garc{\'\i}a Pillado, S.~Gonz\'alez, V.~T.~Markov, C.~Mart{\'\i}nez, A.~A.~Nechaev
\paper When are all group codes of a~noncommutative group Abelian (a~computational approach)?
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 2
\pages 75--85
\mathnet{http://mi.mathnet.ru/fpm1401}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 186
\issue 4
\pages 578--585
\crossref{https://doi.org/10.1007/s10958-012-1006-x}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866507992}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1401
  • http://mi.mathnet.ru/eng/fpm/v17/i2/p75

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Gabriele Nebe, Artur Schäfer, “A nilpotent non abelian group code”, Algebra Discrete Math., 18:2 (2014), 268–273  mathnet  mathscinet
    2. C. García Pillado, S. González, V. T. Markov, C. Martínez, “Non-Abelian group codes over an arbitrary finite field”, J. Math. Sci., 223:5 (2017), 504–507  mathnet  crossref  mathscinet  elib
    3. C. Garcia Pillado, S. Gonzalez, V. Markov, C. Martinez, A. Nechaev, “New examples of non-Abelian group codes”, Adv. Math. Commun., 10:1, SI (2016), 1–10  crossref  mathscinet  isi
  • Фундаментальная и прикладная математика
    Number of views:
    This page:308
    Full text:111
    References:48
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020