RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2012, Volume 17, Issue 5, Pages 69–73 (Mi fpm1434)  

On the geometry of two qubits

T. E. Krenkel

Moscow Technical University of Communications and Informatics

Abstract: Two qubits are considered as a spinor in the four-dimensional complex Hilbert space that describes the state of a four-level quantum system. This system is basic for quantum computation and is described by the generalized Pauli equation including the generalized Pauli matrices. The generalized Pauli matrices constitute the finite Pauli group $\mathcal P_2$ for two qubits of order $2^6$ and nilpotency class $2$. It is proved that the commutation relation for the Pauli group $\mathcal P_2$ and the incidence relation in an Hadamard $2$-$(15,7,3)$ design give rise to equivalent incidence matrices.

Full text: PDF file (106 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2013, 193:4, 526–529

UDC: 512.544.33+519.1+519.145.4

Citation: T. E. Krenkel, “On the geometry of two qubits”, Fundam. Prikl. Mat., 17:5 (2012), 69–73; J. Math. Sci., 193:4 (2013), 526–529

Citation in format AMSBIB
\Bibitem{Kre12}
\by T.~E.~Krenkel
\paper On the geometry of two qubits
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 5
\pages 69--73
\mathnet{http://mi.mathnet.ru/fpm1434}
\transl
\jour J. Math. Sci.
\yr 2013
\vol 193
\issue 4
\pages 526--529
\crossref{https://doi.org/10.1007/s10958-013-1479-2}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899443960}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1434
  • http://mi.mathnet.ru/eng/fpm/v17/i5/p69

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:216
    Full text:79
    References:23
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020