RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2012, Volume 17, Issue 5, Pages 87–101 (Mi fpm1436)  

Determinant theory for lattice matrices

E. E. Marenich

Murmansk State Pedagogical University

Abstract: The determinant theory for matrices over a pseudo-complemented distributive lattice is presented. Previous results on this topic are special cases of the theorems proved in this paper.

Full text: PDF file (160 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2013, 193:4, 537–547

UDC: 512.64

Citation: E. E. Marenich, “Determinant theory for lattice matrices”, Fundam. Prikl. Mat., 17:5 (2012), 87–101; J. Math. Sci., 193:4 (2013), 537–547

Citation in format AMSBIB
\Bibitem{Mar12}
\by E.~E.~Marenich
\paper Determinant theory for lattice matrices
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 5
\pages 87--101
\mathnet{http://mi.mathnet.ru/fpm1436}
\transl
\jour J. Math. Sci.
\yr 2013
\vol 193
\issue 4
\pages 537--547
\crossref{https://doi.org/10.1007/s10958-013-1481-8}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899407067}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1436
  • http://mi.mathnet.ru/eng/fpm/v17/i5/p87

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:212
    Full text:90
    References:42
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020