RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2012, Volume 17, Issue 5, Pages 147–155 (Mi fpm1439)  

The Heisenberg envelope for the Hochschild algebra of a finite-dimensional Lie algebra

Yu. P. Razmyslov, G. A. Pogudin

M. V. Lomonosov Moscow State University

Abstract: We consider some kind of Hopf algebra assigned to any finite-dimensional Lie algebra. This algebra was pointed out by Hochschild. We prove several statements on its embeddings into an algebra of formal power series. In particular, we obtain similar results for Lie algebras. More precisely, a Lie algebra can be embedded into a Lie algebra of special derivations with coefficients in rational functions in (quasi)polynomials.

Full text: PDF file (127 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2013, 193:4, 580–585

UDC: 512.554.34+512.554.35

Citation: Yu. P. Razmyslov, G. A. Pogudin, “The Heisenberg envelope for the Hochschild algebra of a finite-dimensional Lie algebra”, Fundam. Prikl. Mat., 17:5 (2012), 147–155; J. Math. Sci., 193:4 (2013), 580–585

Citation in format AMSBIB
\Bibitem{RazPog12}
\by Yu.~P.~Razmyslov, G.~A.~Pogudin
\paper The Heisenberg envelope for the Hochschild algebra of a~finite-dimensional Lie algebra
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 5
\pages 147--155
\mathnet{http://mi.mathnet.ru/fpm1439}
\transl
\jour J. Math. Sci.
\yr 2013
\vol 193
\issue 4
\pages 580--585
\crossref{https://doi.org/10.1007/s10958-013-1484-5}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899409858}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1439
  • http://mi.mathnet.ru/eng/fpm/v17/i5/p147

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:237
    Full text:110
    References:33
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020