RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2012, Volume 17, Issue 5, Pages 165–178 (Mi fpm1441)  

This article is cited in 4 scientific papers (total in 4 papers)

Endomorphisms of semigroups of invertible nonnegative matrices over ordered rings

P. P. Semenov

M. V. Lomonosov Moscow State University

Abstract: Let $R$ be a linearly ordered commutative ring with $1/2$ and $G_n(R)$ be the subsemigroup of $\mathrm{GL}_n(R)$ consisting of matrices with nonnegative elements. In the paper, we describe endomorphisms of this semigroup for $n\geq3$.

Full text: PDF file (168 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2013, 193:4, 591–600

UDC: 512.55+512.64

Citation: P. P. Semenov, “Endomorphisms of semigroups of invertible nonnegative matrices over ordered rings”, Fundam. Prikl. Mat., 17:5 (2012), 165–178; J. Math. Sci., 193:4 (2013), 591–600

Citation in format AMSBIB
\Bibitem{Sem12}
\by P.~P.~Semenov
\paper Endomorphisms of semigroups of invertible nonnegative matrices over ordered rings
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 5
\pages 165--178
\mathnet{http://mi.mathnet.ru/fpm1441}
\transl
\jour J. Math. Sci.
\yr 2013
\vol 193
\issue 4
\pages 591--600
\crossref{https://doi.org/10.1007/s10958-013-1486-3}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899416241}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1441
  • http://mi.mathnet.ru/eng/fpm/v17/i5/p165

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. I. Tsarkov, “Endomorphisms of the semigroup $G_2(R)$ over partially ordered commutative rings without zero divisors and with $1/2$”, J. Math. Sci., 201:4 (2014), 534–551  mathnet  crossref  mathscinet
    2. E. I. Bunina, V. V. Nemiro, “The group of fractions of the semigroup of invertible nonnegative matrices of order three over a field”, J. Math. Sci., 206:5 (2015), 474–485  mathnet  crossref  mathscinet
    3. E. I. Bunina, A. V. Mikhalev, V. V. Nemiro, “Groups of quotients of semigroups of invertible nonnegative matrices over skewfields”, J. Math. Sci., 233:5 (2018), 640–645  mathnet  crossref
    4. V. V. Nemiro, “Gruppa chastnykh polugruppy obratimykh neotritsatelnykh matrits nad lokalnym koltsom”, Fundament. i prikl. matem., 22:4 (2019), 167–188  mathnet
  • Фундаментальная и прикладная математика
    Number of views:
    This page:155
    Full text:69
    References:33
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020