RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2012, Volume 17, Issue 8, Pages 139–145 (Mi fpm1477)  

Torsion Abelian afi-groups

Pham Thi Thu Thuy

Moscow State Pedagogical University

Abstract: This paper is devoted to the study of Abelian afi-groups. A subgroup $A$ of an Abelian group $G$ is called its absolute ideal if $A$ is an ideal of any ring on $G$. We will call an Abelian group an afi-group if all of its absolute ideals are fully invariant subgroups. In this paper, we will describe afi-groups in the class of fully transitive torsion groups (in particular, separable torsion groups) and divisible torsion groups.

Full text: PDF file (119 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2014, 197:5, 679–683

UDC: 512.541

Citation: Pham Thi Thu Thuy, “Torsion Abelian afi-groups”, Fundam. Prikl. Mat., 17:8 (2012), 139–145; J. Math. Sci., 197:5 (2014), 679–683

Citation in format AMSBIB
\Bibitem{Thu12}
\by Pham Thi Thu Thuy
\paper Torsion Abelian afi-groups
\jour Fundam. Prikl. Mat.
\yr 2012
\vol 17
\issue 8
\pages 139--145
\mathnet{http://mi.mathnet.ru/fpm1477}
\transl
\jour J. Math. Sci.
\yr 2014
\vol 197
\issue 5
\pages 679--683
\crossref{https://doi.org/10.1007/s10958-014-1750-1}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84893870156}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1477
  • http://mi.mathnet.ru/eng/fpm/v17/i8/p139

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:430
    Full text:65
    References:37
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020