RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2013, Volume 18, Issue 2, Pages 95–103 (Mi fpm1501)  

This article is cited in 4 scientific papers (total in 4 papers)

$k$-neighborly faces of the Boolean quadric polytopes

A. N. Maksimenko

P. G. Demidov Yaroslavl State University, Yaroslavl, Russia

Abstract: The Boolean quadric polytope (or correlation polytope) is the convex hull
$$ \operatorname{BQP}(n)=\operatorname{conv}\{x=(x_{ij})\in\{0,1\}^{n(n+1)/2}\mid x_{ij}=x_{ii}x_{jj}, 1\le i\le j\le n\}. $$
The number of its vertices is $2^n$, i.e., superpolynomial in the dimension $d=n(n+1)/2$. In 1992 M. Deza, M. Laurent, and S. Poljak proved that $\operatorname{BQP}(n)$ is $3$-neighborly, i.e., every three vertices of $\operatorname{BQP}(n)$ form a face of this polytope. By analogy with the Boolean quadric polytopes, we consider Boolean $p$-power polytopes $\operatorname{BQP}(n,p)$. For $p=2$, $\operatorname{BQP}(n,p)=\operatorname{BQP}(n)$. For $p=1$, $\operatorname{BQP}(n,p)$ is $n$-dimensional $0/1$-cube. It is shown that $\operatorname{BQP}(n,p)$ is $s$-neighborly for $s\le p+\lfloor p/2\rfloor$. For $k\ge2m$, $m\in\mathbb N$, we prove that the polytope $\operatorname{BQP}(k,2m)$ is linearly isomorphic to a face of $\operatorname{BQP}(n)$ for some $n=\Theta(\binom km)$. Hence, for every fixed $s\le3\lfloor\log_2 n/2\rfloor$, $\operatorname{BQP}(n)$ has $s$-neighborly face with superpolynomial number $2^{\Theta(n^{1/\lceil s/3\rceil})}$ of vertices.

Full text: PDF file (159 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2014, 203:6, 816–822

Bibliographic databases:

UDC: 519.854.33+514.172.45

Citation: A. N. Maksimenko, “$k$-neighborly faces of the Boolean quadric polytopes”, Fundam. Prikl. Mat., 18:2 (2013), 95–103; J. Math. Sci., 203:6 (2014), 816–822

Citation in format AMSBIB
\Bibitem{Mak13}
\by A.~N.~Maksimenko
\paper $k$-neighborly faces of the Boolean quadric polytopes
\jour Fundam. Prikl. Mat.
\yr 2013
\vol 18
\issue 2
\pages 95--103
\mathnet{http://mi.mathnet.ru/fpm1501}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3431787}
\transl
\jour J. Math. Sci.
\yr 2014
\vol 203
\issue 6
\pages 816--822
\crossref{https://doi.org/10.1007/s10958-014-2171-x}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922076392}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1501
  • http://mi.mathnet.ru/eng/fpm/v18/i2/p95

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Seliverstov, “Mnogogranniki i svyaznye podgrafy”, Diskretn. analiz i issled. oper., 21:3 (2014), 82–86  mathnet  mathscinet
    2. A. N. Maksimenko, “Kharakteristiki slozhnosti: klikovoe chislo grafa mnogogrannika i chislo pryamougolnogo pokrytiya”, Model. i analiz inform. sistem, 21:5 (2014), 116–130  mathnet
    3. A. N. Maksimenko, “A special role of Boolean quadratic polytopes among other combinatorial polytopes”, Model. i analiz inform. sistem, 23:1 (2016), 23–40  mathnet  crossref  mathscinet  elib
    4. A. N. Maksimenko, “Bulev kvadratichnyi mnogogrannik yavlyaetsya granyu mnogogrannika lineinykh poryadkov”, Sib. elektron. matem. izv., 14 (2017), 640–646  mathnet  crossref
  • Фундаментальная и прикладная математика
    Number of views:
    This page:205
    Full text:52
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020