|
This article is cited in 3 scientific papers (total in 3 papers)
The Steiner subratio of five points on a plane and four points in three-dimensional space
Z. N. Ovsyannikov M. V. Lomonosov Moscow State University, Moscow, Russia
Abstract:
The Steiner subratio is a fundamental characteristic of a metric space, introduced by A. Ivanov and A. Tuzhilin. This work tries to estimate this subratio for five-point sets on a plane and four-point sets in three-dimensional space.
Full text:
PDF file (531 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2014, 203:6, 864–872
Bibliographic databases:
UDC:
514.774+519.176+514.747
Citation:
Z. N. Ovsyannikov, “The Steiner subratio of five points on a plane and four points in three-dimensional space”, Fundam. Prikl. Mat., 18:2 (2013), 167–179; J. Math. Sci., 203:6 (2014), 864–872
Citation in format AMSBIB
\Bibitem{Ovs13}
\by Z.~N.~Ovsyannikov
\paper The Steiner subratio of five points on a~plane and four points in three-dimensional space
\jour Fundam. Prikl. Mat.
\yr 2013
\vol 18
\issue 2
\pages 167--179
\mathnet{http://mi.mathnet.ru/fpm1508}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3431794}
\elib{https://elibrary.ru/item.asp?id=23616861}
\transl
\jour J. Math. Sci.
\yr 2014
\vol 203
\issue 6
\pages 864--872
\crossref{https://doi.org/10.1007/s10958-014-2178-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922079015}
Linking options:
http://mi.mathnet.ru/eng/fpm1508 http://mi.mathnet.ru/eng/fpm/v18/i2/p167
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
S. Yu. Lipatov, “The functions that do not change types of minimal fillings”, Moscow University Mathematics Bulletin, 70:6 (2015), 267–269
-
E. I. Stepanova, “Bifurcations of Steiner minimal trees and minimal fillings for non-convex four-point boundaries and Steiner subratio for the Euclidean plane”, Moscow University Mathematics Bulletin, 71:2 (2016), 79–81
-
E. I. Stepanova, “Subotnoshenie Shteinera rimanovykh mnogoobrazii”, Trudy mezhdunarodnoi konferentsii «Klassicheskaya i sovremennaya geometriya»,
posvyaschennoi 100-letiyu so dnya rozhdeniya professora Vyacheslava Timofeevicha Bazyleva.
Moskva, 22–25 aprelya 2019 g. Chast 1, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 179, VINITI RAN, M., 2020, 67–72
|
Number of views: |
This page: | 195 | Full text: | 103 | References: | 40 | First page: | 1 |
|