RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2013, Volume 18, Issue 6, Pages 51–75 (Mi fpm1552)  

Computation of the first Stiefel–Whitney class for the variety $\overline{\mathcal M_{0,n}^\mathbb R}$

N. Ya. Amburgab, E. M. Kreinesca

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow, Russia
b National Research University "Higher School of Economics", Moscow, Russia
c Lomonosov Moscow State University, Moscow, Russia

Abstract: We compute the class $W_{n-4}(\overline{\mathcal M_{0,n}^\mathbb R})$, which is Poincaré dual to the first Stiefel–Whitney class for the variety $\overline{\mathcal M_{0,n}^\mathbb R}$ in terms of the natural cell decomposition of $\overline{\mathcal M_{0,n}^\mathbb R}$.

Full text: PDF file (503 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2015, 209:2, 192–211

Bibliographic databases:

UDC: 512.772

Citation: N. Ya. Amburg, E. M. Kreines, “Computation of the first Stiefel–Whitney class for the variety $\overline{\mathcal M_{0,n}^\mathbb R}$”, Fundam. Prikl. Mat., 18:6 (2013), 51–75; J. Math. Sci., 209:2 (2015), 192–211

Citation in format AMSBIB
\Bibitem{AmbKre13}
\by N.~Ya.~Amburg, E.~M.~Kreines
\paper Computation of the first Stiefel--Whitney class for the variety $\overline{\mathcal M_{0,n}^\mathbb R}$
\jour Fundam. Prikl. Mat.
\yr 2013
\vol 18
\issue 6
\pages 51--75
\mathnet{http://mi.mathnet.ru/fpm1552}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3431855}
\transl
\jour J. Math. Sci.
\yr 2015
\vol 209
\issue 2
\pages 192--211
\crossref{https://doi.org/10.1007/s10958-015-2495-1}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84943365921}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1552
  • http://mi.mathnet.ru/eng/fpm/v18/i6/p51

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:131
    Full text:52
    References:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019