|
This article is cited in 1 scientific paper (total in 1 paper)
The prime radical of alternative rings and loops
A. V. Gribov Lomonosov Moscow State University
Abstract:
A characterization of the prime radical of loops as the set of strongly Engel elements was given in our earlier paper. In this paper, some properties of the prime radical of loops are considered. Also a connection between the prime radical of the loop of units of an alternative ring and the prime radical of this ring is given.
Full text:
PDF file (221 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2017, 223:5, 587–601
Bibliographic databases:
UDC:
512.548.77+512.554.5
Citation:
A. V. Gribov, “The prime radical of alternative rings and loops”, Fundam. Prikl. Mat., 20:1 (2015), 145–166; J. Math. Sci., 223:5 (2017), 587–601
Citation in format AMSBIB
\Bibitem{Gri15}
\by A.~V.~Gribov
\paper The prime radical of alternative rings and loops
\jour Fundam. Prikl. Mat.
\yr 2015
\vol 20
\issue 1
\pages 145--166
\mathnet{http://mi.mathnet.ru/fpm1630}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3451668}
\elib{https://elibrary.ru/item.asp?id=25686553}
\transl
\jour J. Math. Sci.
\yr 2017
\vol 223
\issue 5
\pages 587--601
\crossref{https://doi.org/10.1007/s10958-017-3368-6}
Linking options:
http://mi.mathnet.ru/eng/fpm1630 http://mi.mathnet.ru/eng/fpm/v20/i1/p145
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. N. Blagovisnaya, “Klassicheskie radikaly i tsentroid Martindeila artinovykh i neterovykh algebr Li”, Chebyshevskii sb., 20:1 (2019), 313–353
|
Number of views: |
This page: | 159 | Full text: | 90 | References: | 32 |
|