RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2015, Volume 20, Issue 2, Pages 133–156 (Mi fpm1646)  

Transitive Lie algebroids. Categorical point of view

A. S. Mishchenkoa, Xiaoyu Lib

a Lomonosov Moscow State University
b Harbin Institute of Technology, China

Abstract: In this paper, the functorial property of the inverse image for transitive Lie algebroids is proved and also there is proved the functorial property for all objects that are necessary for building transitive Lie algebroids due to K. Mackenzie – bundles $L$ of finite-dimensional Lie algebras, covariant connections of derivations $\nabla$, associated differential $2$-dimensional forms $\Omega$ with values in the bundle $L$, couplings, and the Mackenzie obstructions. On the base of the functorial properties, a final object for the structure of transitive Lie prealgebroid and for the universal cohomology class inducing the Mackenzie obstruction can be constructed.

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-00007


Full text: PDF file (255 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2017, 223:6, 739–755

Bibliographic databases:

UDC: 512.554.35+515.145.27+515.164.3

Citation: A. S. Mishchenko, Xiaoyu Li, “Transitive Lie algebroids. Categorical point of view”, Fundam. Prikl. Mat., 20:2 (2015), 133–156; J. Math. Sci., 223:6 (2017), 739–755

Citation in format AMSBIB
\Bibitem{MisLi15}
\by A.~S.~Mishchenko, Xiaoyu~Li
\paper Transitive Lie algebroids. Categorical point of view
\jour Fundam. Prikl. Mat.
\yr 2015
\vol 20
\issue 2
\pages 133--156
\mathnet{http://mi.mathnet.ru/fpm1646}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3472274}
\elib{http://elibrary.ru/item.asp?id=25686568}
\transl
\jour J. Math. Sci.
\yr 2017
\vol 223
\issue 6
\pages 739--755
\crossref{https://doi.org/10.1007/s10958-017-3384-6}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1646
  • http://mi.mathnet.ru/eng/fpm/v20/i2/p133

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:232
    Full text:65
    References:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020