RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2015, Volume 20, Issue 3, Pages 5–31 (Mi fpm1650)  

This article is cited in 1 scientific paper (total in 1 paper)

Argument shift method and sectional operators: applications to differential geometry

A. V. Bolsinovab

a Lomonosov Moscow State University
b Loughborough University, Unated Kingdom

Abstract: This paper is an attempt to present, in a systematic way, a construction that establishes an interesting relationship between some ideas and notions well-known in the theory of integrable systems on Lie algebras and a rather different area of mathematics studying projectively equivalent Riemannian and pseudo-Riemannian metrics.

Full text: PDF file (271 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2017, 225:4, 536–554

Bibliographic databases:

UDC: 512.81+514.764.2

Citation: A. V. Bolsinov, “Argument shift method and sectional operators: applications to differential geometry”, Fundam. Prikl. Mat., 20:3 (2015), 5–31; J. Math. Sci., 225:4 (2017), 536–554

Citation in format AMSBIB
\Bibitem{Bol15}
\by A.~V.~Bolsinov
\paper Argument shift method and sectional operators: applications to differential geometry
\jour Fundam. Prikl. Mat.
\yr 2015
\vol 20
\issue 3
\pages 5--31
\mathnet{http://mi.mathnet.ru/fpm1650}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3519745}
\elib{http://elibrary.ru/item.asp?id=31035376}
\transl
\jour J. Math. Sci.
\yr 2017
\vol 225
\issue 4
\pages 536--554
\crossref{https://doi.org/10.1007/s10958-017-3476-3}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1650
  • http://mi.mathnet.ru/eng/fpm/v20/i3/p5

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Bolsinov, A. M. Izosimov, D. M. Tsonev, “Finite-dimensional integrable systems: a collection of research problems”, J. Geom. Phys., 115 (2017), 2–15  crossref  mathscinet  zmath  isi  scopus
  • Фундаментальная и прикладная математика
    Number of views:
    This page:173
    Full text:56
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019