RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2015, Volume 20, Issue 5, Pages 209–225 (Mi fpm1681)  

On the quasi-endomorphism rings of quasi-decomposable torsion-free Abelian groups of rank $4$ with a strongly indecomposable quasi-summand of rank $2$

A. V. Cherednikova

Kostroma State Technology University

Abstract: We obtain a description of quasi-endomorphism rings of torsion-free Abelian groups $G$ of rank $4$ that are quasi-decomposable into a direct sum of groups $A_1$ and $A_2$ of rank $1$ and a strongly indecomposable group $B$ of rank $2$ in the case where the quasi-homomorphism group $\mathbb {Q} \otimes \operatorname{Hom}(B, A_2)$ has rank $2$.

Full text: PDF file (179 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2018, 230:3, 491–501

Bibliographic databases:

UDC: 512.541.7

Citation: A. V. Cherednikova, “On the quasi-endomorphism rings of quasi-decomposable torsion-free Abelian groups of rank $4$ with a strongly indecomposable quasi-summand of rank $2$”, Fundam. Prikl. Mat., 20:5 (2015), 209–225; J. Math. Sci., 230:3 (2018), 491–501

Citation in format AMSBIB
\Bibitem{Che15}
\by A.~V.~Cherednikova
\paper On the quasi-endomorphism rings of quasi-decomposable torsion-free Abelian groups of rank~$4$ with a~strongly indecomposable quasi-summand of rank~$2$
\jour Fundam. Prikl. Mat.
\yr 2015
\vol 20
\issue 5
\pages 209--225
\mathnet{http://mi.mathnet.ru/fpm1681}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3589156}
\elib{http://elibrary.ru/item.asp?id=32783566}
\transl
\jour J. Math. Sci.
\yr 2018
\vol 230
\issue 3
\pages 491--501
\crossref{https://doi.org/10.1007/s10958-018-3757-5}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1681
  • http://mi.mathnet.ru/eng/fpm/v20/i5/p209

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:109
    Full text:44
    References:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020