RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2016, Volume 21, Issue 1, Pages 165–180 (Mi fpm1710)  

This article is cited in 1 scientific paper (total in 1 paper)

On the varieties of commutative metabelian algebras

S. P. Mishchenko, N. P. Panov, Yu. Yu. Frolova, Trang Nguyen

Ulyanovsk State University

Abstract: The paper presents new results on varieties of commutative metabelian algebras over a field of zero characteristic. We study the structure of the multilinear part of the variety of all commutative metabelian algebras as a module of the symmetric group. Two almost nilpotent varieties are introduced and studied in this class of algebras. We prove the nonexistence of other almost nilpotent commutative metabelian varieties of subexponential growth.

Full text: PDF file (184 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2018, 233:5, 713–723

UDC: 512.5

Citation: S. P. Mishchenko, N. P. Panov, Yu. Yu. Frolova, Trang Nguyen, “On the varieties of commutative metabelian algebras”, Fundam. Prikl. Mat., 21:1 (2016), 165–180; J. Math. Sci., 233:5 (2018), 713–723

Citation in format AMSBIB
\Bibitem{MisPanFro16}
\by S.~P.~Mishchenko, N.~P.~Panov, Yu.~Yu.~Frolova, Trang~Nguyen
\paper On the varieties of commutative metabelian algebras
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 1
\pages 165--180
\mathnet{http://mi.mathnet.ru/fpm1710}
\transl
\jour J. Math. Sci.
\yr 2018
\vol 233
\issue 5
\pages 713--723
\crossref{https://doi.org/10.1007/s10958-018-3959-x}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050924594}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1710
  • http://mi.mathnet.ru/eng/fpm/v21/i1/p165

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. P. Panov, “Novye svoistva pochti nilpotentnykh mnogoobrazii s tselymi eksponentami”, Chebyshevskii sb., 18:4 (2017), 306–325  mathnet  crossref  elib
  • Фундаментальная и прикладная математика
    Number of views:
    This page:161
    Full text:58
    References:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020