RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2016, Volume 21, Issue 1, Pages 211–215 (Mi fpm1713)  

Group ring ideals related to Reed–Muller codes

I. N. Tumaykin

Lomonosov Moscow State University

Abstract: Reed–Muller codes are one of the most well-studied families of codes; however, there are still open problems regarding their structure. Recently a new ring-theoretic approach has emerged that provides a rather intuitive construction of these codes. This approach is centered around the notion of basic Reed–Muller codes. It is known that basic Reed–Muller codes $\mathcal{M}_{\pi}(m,k)$ over a prime field are powers of the radical $\mathfrak{R}_S$ of a corresponding group algebra and over a nonprime field there are no such equalities, except for trivial ones. In this paper, we consider the ideals $\mathfrak{R}_S \mathcal{M}_{\pi}(m,k)$ that arise while studying the inclusions of the basic codes and radical powers.

Full text: PDF file (126 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2018, 233:5, 745–748

UDC: 512.552.7+512.624.95

Citation: I. N. Tumaykin, “Group ring ideals related to Reed–Muller codes”, Fundam. Prikl. Mat., 21:1 (2016), 211–215; J. Math. Sci., 233:5 (2018), 745–748

Citation in format AMSBIB
\Bibitem{Tum16}
\by I.~N.~Tumaykin
\paper Group ring ideals related to Reed--Muller codes
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 1
\pages 211--215
\mathnet{http://mi.mathnet.ru/fpm1713}
\transl
\jour J. Math. Sci.
\yr 2018
\vol 233
\issue 5
\pages 745--748
\crossref{https://doi.org/10.1007/s10958-018-3962-2}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050924153}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1713
  • http://mi.mathnet.ru/eng/fpm/v21/i1/p211

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:129
    Full text:49
    References:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020