RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2016, Volume 21, Issue 1, Pages 247–255 (Mi fpm1717)  

Specific properties of one-dimensional pseudorepresentations of groups

A. I. Shternab

a Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University

Abstract: We obtain assertions concerning general properties of one-dimensional (not necessarily bounded) pseudorepresentations of groups. In particular, we obtain a quantitative condition on the numerical defect of a given pseudorepresentation which is sufficient for the pseudorepresentation to be pure, i.e., for the restriction of the given pseudorepresentation to every amenable subgroup be an ordinary character of this subgroup.

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-00007_а


Full text: PDF file (126 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2018, 233:5, 770–776

UDC: 512.546+517.986.6+512.815.1

Citation: A. I. Shtern, “Specific properties of one-dimensional pseudorepresentations of groups”, Fundam. Prikl. Mat., 21:1 (2016), 247–255; J. Math. Sci., 233:5 (2018), 770–776

Citation in format AMSBIB
\Bibitem{Sht16}
\by A.~I.~Shtern
\paper Specific properties of one-dimensional pseudorepresentations of groups
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 1
\pages 247--255
\mathnet{http://mi.mathnet.ru/fpm1717}
\transl
\jour J. Math. Sci.
\yr 2018
\vol 233
\issue 5
\pages 770--776
\crossref{https://doi.org/10.1007/s10958-018-3966-y}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050777834}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1717
  • http://mi.mathnet.ru/eng/fpm/v21/i1/p247

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:130
    Full text:44
    References:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020