RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2016, Volume 21, Issue 2, Pages 253–256 (Mi fpm1729)  

This article is cited in 1 scientific paper (total in 1 paper)

Bezout rings, annihilators, and diagonalizability

A. A. Tuganbaevab

a Lomonosov Moscow State University
b National Research University "Moscow Power Engineering Institute"

Abstract: Let $A$ be a right invariant ring. If $A$ is a diagonalizable ring or an exchange Bezout ring, then $B + r(M) = r(M/MB)$ for every finitely generated right $A$-module $M$ and any ideal $B$ of the ring $A$.

Funding Agency Grant Number
Russian Science Foundation 16-11-10013


Full text: PDF file (80 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2019, 237:2, 329–331

UDC: 512.55

Citation: A. A. Tuganbaev, “Bezout rings, annihilators, and diagonalizability”, Fundam. Prikl. Mat., 21:2 (2016), 253–256; J. Math. Sci., 237:2 (2019), 329–331

Citation in format AMSBIB
\Bibitem{Tug16}
\by A.~A.~Tuganbaev
\paper Bezout rings, annihilators, and diagonalizability
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 2
\pages 253--256
\mathnet{http://mi.mathnet.ru/fpm1729}
\transl
\jour J. Math. Sci.
\yr 2019
\vol 237
\issue 2
\pages 329--331
\crossref{https://doi.org/10.1007/s10958-019-4159-z}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1729
  • http://mi.mathnet.ru/eng/fpm/v21/i2/p253

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Tuganbaev, “Arifmeticheskie koltsa”, Algebra, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 164, VINITI RAN, M., 2019, 3–73  mathnet
  • Фундаментальная и прикладная математика
    Number of views:
    This page:116
    Full text:47
    References:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020