RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2016, Volume 21, Issue 3, Pages 107–120 (Mi fpm1736)  

Pseudocomplements in the lattice of subvarieties of a variety of multiplicatively idempotent semirings

E. M. Vechtomov, A. A. Petrov

Vyatka State University

Abstract: The lattice $L(\mathfrak M)$ of all subvarieties of the variety $\mathfrak M$ of multiplicatively idempotent semirings is studied. Some relations have been obtained. It is proved that $L(\mathfrak M)$ is a pseudocomplemented lattice. Pseudocomplements in the lattice $L(\mathfrak M)$ are described. It is shown that they form a $64$-element Boolean lattice with respect to the inclusion. It is established that the lattice $L(\mathfrak M)$ is infinite and nonmodular.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 1.1375.2014/К


Full text: PDF file (165 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2019, 237:3, 410–419

UDC: 512.558

Citation: E. M. Vechtomov, A. A. Petrov, “Pseudocomplements in the lattice of subvarieties of a variety of multiplicatively idempotent semirings”, Fundam. Prikl. Mat., 21:3 (2016), 107–120; J. Math. Sci., 237:3 (2019), 410–419

Citation in format AMSBIB
\Bibitem{VecPet16}
\by E.~M.~Vechtomov, A.~A.~Petrov
\paper Pseudocomplements in the lattice of subvarieties of a~variety of multiplicatively idempotent semirings
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 3
\pages 107--120
\mathnet{http://mi.mathnet.ru/fpm1736}
\transl
\jour J. Math. Sci.
\yr 2019
\vol 237
\issue 3
\pages 410--419
\crossref{https://doi.org/10.1007/s10958-019-04166-4}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1736
  • http://mi.mathnet.ru/eng/fpm/v21/i3/p107

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:133
    Full text:38
    References:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020