RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2016, Volume 21, Issue 4, Pages 175–248 (Mi fpm1753)  

This article is cited in 1 scientific paper (total in 1 paper)

Automorphism-extendable and endomorphism-extendable modules

A. A. Tuganbaevab

a Lomonosov Moscow State University
b National Research University "Moscow Power Engineering Institute"

Abstract: This review paper is concerned with modules in which all automorphisms (endomorphisms) of submodules can be extended to endomorphisms of the entire module. We consider old results and obtain a number of new results. We also consider automorphism-invariant, quasi-injective, and injective modules.

Funding Agency Grant Number
Russian Science Foundation 16-11-10013


Full text: PDF file (596 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 512.55

Citation: A. A. Tuganbaev, “Automorphism-extendable and endomorphism-extendable modules”, Fundam. Prikl. Mat., 21:4 (2016), 175–248

Citation in format AMSBIB
\Bibitem{Tug16}
\by A.~A.~Tuganbaev
\paper Automorphism-extendable and endomorphism-extendable modules
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 4
\pages 175--248
\mathnet{http://mi.mathnet.ru/fpm1753}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3783801}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1753
  • http://mi.mathnet.ru/eng/fpm/v21/i4/p175

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. N. Abyzov, Ch. K. Kuin, A. A. Tuganbaev, “Moduli, invariantnye otnositelno avtomorfizmov i idempotentnykh endomorfizmov svoikh obolochek i nakrytii”, Algebra, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 159, VINITI RAN, M., 2019, 3–45  mathnet
  • Фундаментальная и прикладная математика
    Number of views:
    This page:127
    Full text:53
    References:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020