RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2016, Volume 21, Issue 5, Pages 19–46 (Mi fpm1756)  

This article is cited in 1 scientific paper (total in 1 paper)

On properties of skew-framed immersions cobordism groups

P. M. Akhmet'eva, O. D. Frolkinab

a Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Troitsk, Moskovskaya obl.
b Lomonosov Moscow State University

Abstract: In this paper, we introduce geometric technique of working with skew-framed manifolds. It allows us to study stable homotopy groups of some Thom spaces by geometric means. We schematically describe how our results (which are also of independent interest) can be applied to obtain a proof of the Baum–Browder theorem stating nonimmersibility of $\mathbb R\mathrm P^{10}$ to $\mathbb R^{15}$.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-01-06302_а


Full text: PDF file (313 kB)
References: PDF file   HTML file
UDC: 515.146.6+515.164.635

Citation: P. M. Akhmet'ev, O. D. Frolkina, “On properties of skew-framed immersions cobordism groups”, Fundam. Prikl. Mat., 21:5 (2016), 19–46

Citation in format AMSBIB
\Bibitem{AkhFro16}
\by P.~M.~Akhmet'ev, O.~D.~Frolkina
\paper On properties of skew-framed immersions cobordism groups
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 5
\pages 19--46
\mathnet{http://mi.mathnet.ru/fpm1756}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1756
  • http://mi.mathnet.ru/eng/fpm/v21/i5/p19

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. M. Akhmetev, F. Yu. Popelenskii, “Lokalnye koeffitsienty i formula Gerberta”, Fundament. i prikl. matem., 21:6 (2016), 79–91  mathnet
  • Фундаментальная и прикладная математика
    Number of views:
    This page:87
    Full text:38
    References:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020